• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Eq. Trigonométrica (Cosseno)

Eq. Trigonométrica (Cosseno)

Mensagempor Rafael16 » Ter Jul 23, 2013 17:51

Resolvi a equação da seguinte maneira:

cos(5x) + cos(3x) = 0
cos(5x) + cos(3x) = 2.cos(4x) . cos(x) = 0
cos(4x)=0 ou cos(x)=0

Daí cheguei na seguinte solução:
S = {x e R| x = pi/2 + k.pi ou x = pi/8 + k.pi/4, k e Z}

Enfim, gostaria de saber se tem uma outra forma de resolver essa equação.
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Eq. Trigonométrica (Cosseno)

Mensagempor MateusL » Qua Jul 24, 2013 15:46

Olá!

Acredito que essa seja uma das formas mais simples de resolver.
Todas as outras formas que consegui pensar não são tão simples como essa.

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Eq. Trigonométrica (Cosseno)

Mensagempor Rafael16 » Qua Jul 24, 2013 16:15

MateusL escreveu:Olá!

Acredito que essa seja uma das formas mais simples de resolver.
Todas as outras formas que consegui pensar não são tão simples como essa.

Abraço!


Obrigado MateusL!
Estava pensando dessa maneira:
cos(a) = cos(b) --> a = b + 2k.pi ou a = - b + 2k.pi
Só que dessa maneira não iria da certo por causa do sinal negativo (cos 5x = - cos 3x). Certo? :-D
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Eq. Trigonométrica (Cosseno)

Mensagempor MateusL » Qui Jul 25, 2013 17:51

Rafael16 escreveu:Obrigado MateusL!
Estava pensando dessa maneira:
cos(a) = cos(b) --> a = b + 2k.pi ou a = - b + 2k.pi
Só que dessa maneira não iria da certo por causa do sinal negativo (cos 5x = - cos 3x). Certo? :-D


Errado! Daria certo! Tu só terias que notar que -\cos(a)=\cos (\pi-a), então obterías \cos(5x)=\cos(\pi-3x). Até cheguei a pensar em algo do tipo, mas, à primeira vista, me pareceu que daria mais trabalho, mas realmente fica mais simples:

5x=\pi-3x+2k\pi\iff x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}
5x=-\pi+3x+2k\pi\iff x=-\dfrac{\pi}{2}+k\pi

Note que x=-\dfrac{\pi}{2}+k\pi,\ k\in\mathbb{Z}, apesar de estar escrito de maneira diferente, é uma solução equivalente a x=\dfrac{\pi}{2}+k\pi,\ k\in\mathbb{Z}.

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?