• Anúncio Global
    Respostas
    Exibições
    Última mensagem

redução ao primeiro quadrante

redução ao primeiro quadrante

Mensagempor zenildo » Sex Jun 28, 2013 17:41

O VALOR DE SEN 1200° É IGUAL A:

A) COS 60°
B) -SEN 60°
C) COS 30°
D)-SEN 30°
E) COS 45°
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando

Re: redução ao primeiro quadrante

Mensagempor Rafael16 » Sex Jun 28, 2013 21:28

A determinação principal de 1200º é 120º (Para sabermos, basta dividir por 360º, o resto é a determinação).

sen(1200º) = sen(120º)

Agora é só reduzir ao primeiro quadrante:
Como 120º pertence ao segundo quadrante, basta subtrairmos 180 - 120 = 60, logo:
sen(1200º) = sen(120º) = sen(60º)

tem uma propriedade que é a seguinte: sen(x) = cos(90-x) ou cos(x) = sen(90-x) (seno de um ângulo é igual a cosseno do complemento desse ângulo)

sen(60º) = cos(90º - 60º) = cos(30º)

opção c

Qualquer dúvida comenta ai.
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}