• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trigonometria] Por favor me ajudem

[Trigonometria] Por favor me ajudem

Mensagempor rochadapesada » Qua Abr 24, 2013 18:25

(Uem) Considere um ponto P(x,y) sobre a
circunferência trigonométrica e que não esteja sobre
nenhum dos eixos coordenados. Seja \alpha o ângulo
determinado pelo eixo OX e pela semi-reta OP, onde
O é a origem do sistema. Nessas condições, assinale
o que for correto.
01) A abscissa de P é menor do que cos(\alpha).
02) A ordenada de P é igual a sen[\alpha + (\pi/2)].
04) A tangente de \alpha é determinada pela razão entre a
ordenada e a abscissa de P.
08) As coordenadas de P satisfazem à equação
{x}^{2}+{y}^{2}=1.
16) Se x = y, então cotg(\alpha) = -1.
32) \alpha = \pi/4 é o menor arco positivo para o qual a
equação {cos}^{2}(\alpha + \pi) + {sen}^{2}[\alpha + (\pi/2)] = {cos}^{2}[(\alpha +
(\pi/2)] + {sen}^{2}(\alpha + \pi) é satisfeita.
64) sen(2\alpha) = 2y.

Não entendi as partes do sen e cos, onde usa, ou seja toda a parte não entendi
rochadapesada
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Abr 04, 2013 22:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Trigonometria] Por favor me ajudem

Mensagempor young_jedi » Qui Abr 25, 2013 21:54

como p é um ponto sobre o circulo trigonometrico então temos

x=cos(\alpha)

y=sen(\alpha)

assim temos que as duas primeiras afirmativas são falsas

temos que

\frac{y}{x}=\frac{sen(\alpha)}{cos(\alpha)}=tg(\alpha)

então a terceira é verdadeira

é facil perceber que a quarta tabme é verdadeira

se x=y

temos que

cotg(\alpha)=\frac{x}{y}=\frac{x}{x}=1

portanto a quinta afirmativa é falsa

cos^2(\alpha+\pi)+sen^2(\alpha+\pi/2)=cos^2(\alpha+\pi/2)+sen^2(\alpha+\pi)

cos^2(\alpha+\pi)+1-cos^2(\alpha+\pi/2)=cos^2(\alpha+\pi/2)+1-cos^2(\alpha+\pi)

2cos^2(\alpha+\pi)=2cos^2(\alpha+\pi/2)

cos^2(\alpha+\pi)=cos^2(\alpha+\pi/2)

para que estam iguladade seja verdadeira temos que uma desta igualdades tem que ser satisfeitas

-\alpha-\pi=\alpha+\frac{\pi}{2}

\pi-\alpha-\pi=\alpha+\frac{\pi}{2}

então resoltevemos temos que

\alpha=-\frac{3\pi}{4}=\frac{\pi}{4}

ou

\alpha=-\frac{\pi}{4}

ou seja a sexta afirmativa é falsa

por fim temos que

sen(2\alpha)=sen(\alpha)cos(\alpha)+sen(\alpha)cos(\alpha)

sen(2\alpha)=2cos(\alpah)sen(\alpha)=2xy

portanto a ultima é falsa
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59