• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trigonometria no ciclo]

[Trigonometria no ciclo]

Mensagempor Sabrinna » Qui Abr 04, 2013 16:04

Boa tarde! Não estou conseguindo resolver esse exercício.Me ajudem!!!



Se tgx=4,determine o valor de:
tg(?/4 + x) + tg( ?/4 - x)
Sabrinna
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Abr 04, 2013 15:32
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Trigonometria no ciclo]

Mensagempor e8group » Qui Abr 04, 2013 16:37

Boa tarde ,vamos deduzir simultaneamente uma fórmula para tangente da soma e diferença de dois ângulos .

Considere tan(a + c) .Temos tan(a+c) = \frac{sin(a+c)}{cos(a+c)} ,como

sin(a+c) = sin(a)cos(c) + cos(a)sin(c) e cos(a+c) = cos(a)cos(c) - sin(a)sin(c) ,então :

tan(a+c) = \frac{sin(a)cos(c) + cos(a)sin(c) }{cos(a)cos(c) - sin(a)sin(c)} e ainda a expressão é equivalente a


tan(a+c) = \frac{\dfrac{sin(a)cos(c) + cos(a)sin(c)}{cos(a)cos(c)} }{\dfrac{cos(a)cos(c) - sin(a)sin(c)}{cos(a)cos(c)}} =  \frac{tan(a) + tan(c)}{1-tan(a)tan(c)} .

Assim , se c = -b . A tangente da diferença a-b será : tan(a-b) = \frac{tan(a) - tan(b)}{1 +tan(a)tan(b)} e da soma a+b : tan(a +b) = \frac{tan(a) + tan(b)}{1 -tan(a)tan(b)} .

Aplicação :

tan(\pi/4 + x) = tan(45^{\circ} + x) = \frac{tan(45^{\circ}) + tan(x)}{1 -tan(45^{\circ})tan(x)}

e tan(\pi/4 - x) = tan(45^{\circ} - x) = \frac{tan(45^{\circ}) - tan(x)}{1 +tan(45^{\circ})tan(x)} . Sendo tan(\pi/4) = tan(45^{\circ} ) = 1 ,então :

tan(\pi/4 + x) = tan(45^{\circ} + x) = \frac{1 + tan(x)}{1 -tan(x)}

e tan(\pi/4 - x) = tan(45^{\circ} - x) =  \frac{1 - tan(x)}{1 +tan(x)} .

Logo ,

tan(\pi/4 + x) + tan(\pi/4 - x)  =  \frac{1 + tan(x)}{1 -tan(x)} +  \frac{1 - tan(x)}{1 +tan(x)} . Basta substituir tan(x) = 4 ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Trigonometria no ciclo]

Mensagempor Sabrinna » Qui Abr 04, 2013 18:44

Muito obrigada.Entendi!!!
Sabrinna
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Abr 04, 2013 15:32
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}