• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão de Trigonometria II

Questão de Trigonometria II

Mensagempor Leticiamed » Dom Dez 02, 2012 11:01

Seja a matriz M = (aij)3x3, tal que:

aij = cos7?/i se i?j

sen7?/j se i=j

Obtenha a matriz M e calcule o determinante de M.

Obs: Neste exercício minha maior dificuldade foi obter os valores a partir da função, não sei por exemplo quando o sen7? é 0, -1 ou 1, e a resolução da minha apostila não ajuda nada
Leticiamed
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Dez 02, 2012 10:44
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibular
Andamento: formado

Re: Questão de Trigonometria II

Mensagempor DanielFerreira » Dom Dez 02, 2012 18:53

Leticiamed,
seja bem-vinda!

A matriz é dada por M = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}


Ela satisfaz a condição \begin{cases} a_{ij} = cos \left (\frac{7\pi }{i}  \right ), \textup{se } i \neq j \\\\ a_{ij} = sen\left (\frac{7\pi }{j}  \right ), \textup{se } i = j \end{cases}

Segue que:

M = \begin{bmatrix} sen\left (\frac{7\pi }{1}\right ) & cos \left (\frac{7\pi }{1}  \right ) & cos \left (\frac{7\pi }{1}  \right ) \\\\ cos \left (\frac{7\pi }{2}  \right ) & sen\left (\frac{7\pi }{2}\right ) & cos \left (\frac{7\pi }{2}  \right ) \\\\ cos \left (\frac{7\pi }{3}  \right ) & cos \left (\frac{7\pi }{3}  \right ) & sen\left (\frac{7\pi }{3}\right ) \end{bmatrix}

Resta calcular o determinante!

Comente qualquer dúvida.

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}