• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funções circulares

Funções circulares

Mensagempor Mariana Martin » Seg Set 24, 2012 15:20

Um mastro de bandeira e um edifício têm as suas bases sobre um mesmo plano horizontal. Do alto do edifício medem-se o ângulo de elevação \alpha do topo do mastro e o ângulo de depressão \beta do pé do mastro. Sabendo-se que o edifício tem a metros de altura, calcule a altura h do mastro.

Pessoal, meu raciocínio foi:
h = sen\alpha+sen\beta
porém a resposta é h= a(tag\alpha+tg\beta )/tg\beta
Mariana Martin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Qui Jun 21, 2012 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Funções circulares

Mensagempor young_jedi » Seg Set 24, 2012 15:52

Entendi que a figura é a seguinte

predio.jpg
predio_mastro
predio.jpg (11.04 KiB) Exibido 1410 vezes


D é a distancia entre o predio e o mastro portanto

\frac{x}{D}&=&tg\alpha

x&=&D.tg\alpha

e

\frac{a}{D}&=&tg\beta

D&=&\frac{a}{tg\beta}

x&=&tg\alpha.\frac{a}{tg\beta}

h=a+x

h=a+tg\alpha.\frac{a}{tg\beta}

h&=&\frac{a.tg\beta+a.tg\alpha}{tg\beta}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.