• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demostração das identidades trigonometricas

Demostração das identidades trigonometricas

Mensagempor Alerecife » Sáb Set 08, 2012 13:32

Como posso demostra:

a) cos2x=1-{sen}^{2}x

b)\frac{1}{1-tgx}-\frac{1}{1+tgx}=tg2x

c) E resolver sen\left(x+\frac{\pi}{6} \right)=\frac{1}{2} em \Re

d) E resolver no intervalo \left[0,2\pi \right] a inequação tg (x) \succeq1

pela atenção obrigado!
Alerecife
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Ter Set 04, 2012 12:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura
Andamento: cursando

Re: Demostração das identidades trigonometricas

Mensagempor Alerecife » Dom Set 09, 2012 13:46

Ok vamos lá vejam ate aonde eu cheguei:
a) cos2x=cos(x+x)=cosx.cosx-senx.sex=cos²x-sen²x

como: sen²x+cos²x=1\Rightarrow cos²x=1-sen²x
minha duvida:cos2x=(1-sen²x)-sen²x=1-2(sen²x)??

Na letra b) eu cheguei ate \frac{2(cosx.senx)}{cos²x-sen²x}=tg2x

a letra e c) o método de resposta é semelhante?

pela atenção obrigado!
Alerecife
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Ter Set 04, 2012 12:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura
Andamento: cursando

Re: Demostração das identidades trigonometricas

Mensagempor young_jedi » Dom Set 09, 2012 16:36

Na letra a) acho que seu raciocinio esta correto consulte a questão

Na letra b) temos que

\frac{2cosxsenx}{cos^2x-sen^2x}&=&\frac{cosx.senx+cosx.senx}{cosx.cosx-senx.senx}

usando as identidades trigonometricas temos

cos(2x)&=&cosx.cosx-senx.senx
sen(2x)&=&cosx.senx+cosx.senx

sendo assim temos

\frac{cosx.senx+cosx.senx}{cosx.cosx-senx.senx}&=&\frac{sen(2x)}{cos(2x)}

Na letra c) podemos perceber que os angulos que tem seu seno como sendo igual a meio são os angulos

\frac{\pi}{6} e \frac{5\pi}{6}

sendo assim temos que para x satisfazer a equação deve ser igual a

0+2\pi.k ou \frac{4\pi}{6}+2\pi.k onde k&=&0,1,2,3...
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Demostração das identidades trigonometricas

Mensagempor MarceloFantini » Dom Set 09, 2012 17:45

Na letra (a) o correto deve ser \cos 2x = 1 - 2 \sin^2 x. Você está no caminho correto. Para a letra (b), note que

\tan 2x = \frac{\sin 2x}{\cos 2x} = \frac{2 \sin x \cos x}{\cos^2 x - \sin^2 x}

= \frac{2 \sin x \cos x}{\cos^2 x} \cdot \frac{1}{(1 - \tan^2 x} = \frac{2 \tan x}{1 - \tan^2 x}

= \frac{\tan x - (- \tan x)}{1 - \tan^2 x} = \frac{(1 + \tan x) - (1 - \tan x)}{(1+ \tan x)(1 - \tan x)}

= \frac{1}{1 - \tan x} - \frac{1}{1 + \tan x}.

Na letra (c), como ele quer que resolvamos para x \in \mathbb{R}, devemos fazer x - \frac{\pi}{6} = \frac{\pi}{6} + 2 k \pi e x - \frac{\pi}{6} = \frac{5 \pi}{6} + 2 k \pi, pois não é possível escrever tudo como um conjunto só. Daí, teremos que a solução é o conjunto

\{ x \in \mathbb{R} \; | \; x = \frac{\pi}{3} + 2 k \pi \text{ ou } x = \pi + 2 k \pi \}.

Por último, teremos que \tan x \geq 1 se x \in \left[ \frac{\pi}{4}, \frac{\pi}{2} \right) ou x \in \left[ \frac{5 \pi}{4}, \frac{3 \pi}{2} \right).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: