por Giudav » Ter Abr 24, 2012 22:37
(181)Nos itens a sequir, encontre o valor de x ?

Minhas resolução galera se tiver maneiras mais fáceis de-se obter o resultado porvavor comentem:

Obs: duvida apartir do iten( c )
Gabarito:
a:100°
b:120°
c:15°
d:70°
-
Giudav
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Ter Fev 21, 2012 23:16
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por rafaelvasconcellos » Ter Abr 24, 2012 23:22
Ai vê se compreende , só vejo esse meio para resolver estas 2 questões ... creio que você só tenha pedido essas né?

-
rafaelvasconcellos
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Abr 23, 2012 16:18
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Pré Militar
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Coisa facil pra quem sabe... AJUDA !
por brunox1x » Dom Jun 16, 2013 15:36
- 1 Respostas
- 1524 Exibições
- Última mensagem por DanielFerreira

Ter Jun 18, 2013 05:55
Equações
-
- [torneira em reservatório] ME AJUDA, É FACIL PARA VOCÊ
por leandro moraes » Sex Jun 03, 2011 13:04
- 2 Respostas
- 3205 Exibições
- Última mensagem por leandro moraes

Sex Jun 03, 2011 18:35
Cálculo: Limites, Derivadas e Integrais
-
- Questão fácil, me ajuda, concurso correios 2011 cesp, obriga
por jrmaialds » Seg Nov 12, 2012 16:40
- 2 Respostas
- 2571 Exibições
- Última mensagem por jrmaialds

Seg Nov 12, 2012 18:03
Aritmética
-
- muito divertido
por GeRmE » Dom Out 31, 2010 14:20
- 9 Respostas
- 6937 Exibições
- Última mensagem por GeRmE

Sex Nov 19, 2010 18:49
Desafios Enviados
-
- É muito difícil
por Thiago 86 » Dom Set 29, 2013 21:21
- 2 Respostas
- 2641 Exibições
- Última mensagem por Thiago 86

Sex Out 04, 2013 10:11
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.