• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Triângulo Retângulo

Triângulo Retângulo

Mensagempor nathyn » Qua Mar 21, 2012 16:35

oiiee, tentei fazer essa questão mas nao consegui, se alguem poder me ajudar, por favor...

Seja o triângulo ABC, onde A(0, 0), B(2, 0) e C(2, 2?3). Se a medida do ângulo interno referente ao vértice A for reduzida em 50%, a área do triângulo ficará
a) 75% menor b) 50% menor c) 33% menor d) 30% menor e) 25% meno


Bom, eu montei o triangulo, usei teorema de pitagoras para encontrar a hipotenusa e usei a relação cosseno para achar os valores dos angulos e ficou assim:


Imagem

Bom reduzindo em 50% o ângulo A sei que ficará:


Imagem



Mas não sei qual a relação disso com os lados -(.
Me ajude por favor.
nathyn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Nov 16, 2011 14:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Triângulo Retângulo

Mensagempor fraol » Dom Abr 08, 2012 00:12

Seguindo os seus desenhos temos:

No primeiro triângulo, a área é:

A_1 = \frac{1}{2} med(AB) . med(BC) = \frac{1}{2}.2.2\sqrt{3} \iff A_1 = 2\sqrt{3}.

No segundo triângulo, a tangente de 30 graus é: tg 30^{\circ} = \frac{BC}{2}, mas tg 30^{\circ} = \frac{\sqrt{3}}{3}, então:

\frac{BC}{2} = \frac{\sqrt{3}}{3} \iff BC = 2 \frac{\sqrt{3}}{3}.

Assim, no segundo triângulo, a área é:

A_2 = \frac{1}{2} med(AB) . med(BC) = \frac{1}{2} . 2 . 2 \frac{\sqrt{3}}{3} \iff A_2 = 2 \frac{\sqrt{3}}{3}.

\iff A_2 =  \frac{1}{3} . 2\sqrt{3}

Observe que a área do segundo triângulo é igual a um terço da área do primeiro triângulo.
Então a área do segundo triângulo é dois terços menor do que a área do primeiro.
Como dois terços é igual a aproximadamente 67% então não há alternativa correta.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}