• Anúncio Global
    Respostas
    Exibições
    Última mensagem

altura da torre

altura da torre

Mensagempor qscvrdxz » Ter Jun 02, 2009 19:21

Veja este exercício:

Uma pessoa de 1,60 m de altura, situada a 100 m de uma torre, avista o seu topo sob um ângulo de 35º com a horizontal. (Ela mede o ângulo com o auxílio de um teodolito). Qual a altura da torre?

Dúvidas:

1 - Essa horizontal que seria meu cateto adjacente está no chão ou está a 160 cm acima do chão?

2 - Caso meu cateto adjacente esteja realmente 160 cm acima do chão, para resolver o exercício eu simplesmente tenho de calcular a medida do cateto oposto ao ângulo de 35 º e adicionar 1,6?

Este enunciado me parece tão ambíguo, a tal da altura do observador complicou bastante este exercício pra mim, gostaria que alguém me explica-se como resolvê-lo.


Obrigado.
qscvrdxz
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Jun 02, 2009 19:01
Localização: Belo Horizonte, MG
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: altura da torre

Mensagempor Molina » Ter Jun 02, 2009 19:52

Fazendo um esboço do desenho, facilita bem as coisas.
Acho que você está no caminho certo..

Teríamos a formação de um triângulo, formado a cima de 1,60m, cujo lado parelelo ao chão mede 100m. O ângulo formado por este cateto com a hipotenusa, forma um ângulo de 35º. Teu objetivo é descobrir o valor do cateto oposto (ou seja, a altura da torre, com menos de 1,60).
Logo, calculando o valor do cateto oposto deve ser adicionado o valor de 1,60m (tamanho da pessoa observadora).

E agora, você acha que deverá que usar sen 35º ou cos 35º para resolver isto?
Veja a teoria dos dois casos para confirmar qual voce deve usar.


Abraços. Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: altura da torre

Mensagempor qscvrdxz » Ter Jun 02, 2009 23:15

Obrigado molina, minha dúvida éra o que fazer com a altura, mas como você confirmou minha linha de raciocínio estava correta, quanto ao cálculo das razões trigonométricas do triângulo retângulo eu estou tranquilo nesta área.
qscvrdxz
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Jun 02, 2009 19:01
Localização: Belo Horizonte, MG
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.