• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trigonometria] Equação de segundo grau.

[Trigonometria] Equação de segundo grau.

Mensagempor brunocav » Qui Out 06, 2011 18:31

Olá! Estou com problemas para resolver a seguinte equação:

x^2 - 2x + sen\alpha(x-1) - cos\alpha(1-x) + sen\alpha cos\alpha = -1

Já tentei diversas coisas... Eu acho que cheguei à resposta mas não tenho certeza, vejam:

x^2 - 2x + sen\alpha(x-1) + cos\alpha(x-1) + sen\alpha cos\alpha = -1
x^2 - 2x + sen\alpha x + cos\alpha x - sen\alpha - cos\alpha + sen\alpha cos\alpha = -1
x^2 + x(sen\alpha + cos\alpha - 2) + (1 - cos\alpha)(1 - sen\alpha) = 0

Logo:
\Delta = (sen\alpha + cos\alpha - 2)^2 - 4(1 - cos\alpha)(1 - sen\alpha)
\Delta = (sen^2\alpha + cos^2\alpha + 4 + 2sen\alpha cos\alpha  -4sen\alpha -4cos\alpha) + (-4sen\alpha cos\alpha + 4sen\alpha + 4cos\alpha)
\Delta = 5 - 2sen\alpha cos\alpha

x = \frac{2 - sen \alpha - cos \alpha +- \sqrt(5 - 2 sen \alpha cos \alpha)}{2}

Onde está o erro, ou qual é a solução?

Agradeço desde já.
brunocav
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mai 25, 2011 20:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Trigonometria] Equação de segundo grau.

Mensagempor brunocav » Ter Out 25, 2011 16:41

Descobri o erro. Faz um tempo, mas me esqueci de avisar. O erro foi no cálculo do delta, hehe...

De fato, o delta correto seria assim:

\Delta = (sen(a) - cos(a))^2

A resposta seria, então:

x = \frac {2 - sen(a) - cos(a) \pm (sen(a) - cos(a))}{2}
x_1 = 1 - cos(a)
x_2 = 1 - sen(a)
brunocav
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mai 25, 2011 20:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.