• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercício

exercício

Mensagempor analuiza » Qua Fev 16, 2011 23:43

1)As razões trigonométricas seno,cosseno,tangente.são razões entre os lados de um triangulo retângulo.na construção abaixo,podemos escrever que:
tg \alpha= \frac{6}{8}=\frac{9}{12}=\frac{12}{16}=\frac{3}{4}.
Nessas condições,então sen \alpha + cos \alpha vale:
a)1 b)\frac{7}{5} c)\frac{35}{12} d)\frac{1}{2} e)\frac{7}{4}
analuiza
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Fev 16, 2011 16:10
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: exercício

Mensagempor DanielFerreira » Qui Fev 17, 2011 17:18

1)As razões trigonométricas seno,cosseno,tangente.são razões entre os lados de um triangulo retângulo.na construção abaixo,podemos escrever que:
tg \alpha= \frac{6}{8}=\frac{9}{12}=\frac{12}{16}=\frac{3}{4}.
Nessas condições,então sen \alpha + cos \alphavale:
a)1 b)\frac{7}{5} c)\frac{35}{12} d)\frac{1}{2} e)\frac{7}{4}


tg \alpha = \frac{sen \alpha}{cos \alpha} = \frac{3k}{4k}
sen a = 3k
cos a = 4k

cos² a + sen² a = 1
9k² + 16k² = 1
k² = \frac{1}{25}

k = \frac{1}{5}

temos que:
sen a = \frac{3}{5}

e,

cos a = \frac{4}{5}

então,
cos a + sen a = \frac{7}{5}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.