• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida de matemática básica

Dúvida de matemática básica

Mensagempor Regina » Ter Mar 01, 2011 17:24

Olá!
Isto vai parecer estranho.
No desenvolvimento de um logaritmo Tenho: \frac{1}{3}{log}_{2}{x}^{2}, (eu sei que {log}_{b}{x}^{p}=p{log}_{b}x) então eu passei o expoente 2 do x para trás do log e penso que ficaria \frac{2+1{log}_{2}x}{3}, que por sua vez tem que ficar \frac{3+{log}_{2}x}{3} (este é o resultado final que tem de dar).

O que eu quero saber é se a passagem do expoente para antes do log está correcta. Se o 2 passa a somar e não a multiplicar.

Esta dúvida surge por causa da propriedade que indiquei, em que o expoente passa a multiplicar pelo log e não a somar, como eu fiz.

E depois não percebo, no resultado final, porque o 3 fica a somar pelo log e não a multiplicar!

Obrigada
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando

Re: Dúvida de matemática básica

Mensagempor LuizAquino » Ter Mar 01, 2011 17:31

A propriedade correta é: \log_b x^n = n\log_b x. Por favor, poste a questão completa e os passos que você deu até agora.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida de matemática básica

Mensagempor Regina » Ter Mar 01, 2011 19:07

Seja g a função definida por g(x)={log}_{2}(2\sqrt[3]{x})
E de quatro expressões dadas, pergunta qual deles também pode definir g.

Sei que a resposta correcta é \frac{3+{log}_{2}x}{3}.

Comecei que por desenvolver da seguinte maneira:
{log}_{2}({2x}^{\frac{1}{3}})=
\frac{1}{3}{log}_{2}(2x)=
\frac{1}{3}{log}_{2}({x}^{2})=
\frac{2+1{log}_{2}(x)}{3} que vai dar \frac{3{log}_{2}(x)}{3}
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando

Re: Dúvida de matemática básica

Mensagempor Molina » Ter Mar 01, 2011 20:01

Boa noite, Regina.

Você está se confundindo da segunda para a terceira expressão. Veja o detalhe:

g(x)={log}_{2}(2\sqrt[3]{x})

g(x)={log}_{2}(2{x}^{\frac{1}{3}})

g(x)={log}_{2}2 + {log}_{2}x^{\frac{1}{3}}

g(x)=1 + \frac{1}{3}{log}_{2}x

g(x)=\frac{3 + log_{2}x}{3}{

Percebeu a diferença? :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Dúvida de matemática básica

Mensagempor Renato_RJ » Ter Mar 01, 2011 20:14

Boa noite Regina, tudo em paz ??

O seu engano foi na passagem do log_{2} (2x), veja:

\log_{2}(2x) \neq \log_{2} (x^2)

Vamos fazer essa conta...

\log_{2} (2 \sqrt[3]{x} ) \Rightarrow \, \log_{2}2 + log_{2} (\sqrt[3]{x}) \Rightarrow \, 1 + \frac{\log_{2}x}{3} \Rightarrow \, \frac{3 + \log_{2}x}{3}

Espero ter ajudado...

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Dúvida de matemática básica

Mensagempor Regina » Qua Mar 02, 2011 10:46

Já percebi o meu erro! Em vez de colocar 1+(1/3) colocava tudo em numerador (1+1)/3. Esqueci-me da parte em que na soma, os denominadores têm que ser iguais.

Realmente muito básico.

Obrigada a todos :-D
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.