• Anúncio Global
    Respostas
    Exibições
    Última mensagem

logaritmos de novo...

logaritmos de novo...

Mensagempor Regina » Sáb Fev 26, 2011 12:33

Desta vez bloqueei numa parte de um exercício que nem eu consigo entender porquê!

O enunciado diz o seguinte:
A magnitude aparente (m) e a magnitude absoluta (M) de uma estrela são grandezas utilizadas em astronomia para cular a distância (d) a que essa estrela se encontra da Terra. As três variáveis estão relacionadas pela fórmula {10}^{0,4(m-M)}=\frac{{d}^{2}}{100}

Prove que, para quaisquer m, M e d, se tem: m=M-5(1-{log}_{10}d)

O livro tem uma proposta de resolução:
{10}^{0,4(m-M)}=\frac{{d}^{2}}{100}\Leftrightarrow
0,4(m-M)={log}_{10}\left(\frac{{d}^{2}}{100} \right)\Leftrightarrow
0,4(m-M)={log}_{10}{d}^{2}-{log}_{10}100\Leftrightarrow
0,4(m-M)=2{log}_{10}d-2\Leftrightarrow

o que eu não entendo é como deste passo, eles passam para a expressão seguinte que é:
0,4(m-M)=-2(1-{log}_{10}d)

Porque é que 2{log}_{10}d-2 
Passa para -2(1-{log}_{10}d)???

Estou dando em doida com estas expressões
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando

Re: logaritmos de novo...

Mensagempor LuizAquino » Sáb Fev 26, 2011 13:47

Não há mistério algum nessa passagem. Basta usar fatoração. Lembre-se que ax+ay = a(x+y). Nesse tipo de fatoração, nós dizemos que o a foi colocado em evidência. Em 2\log_{10} d - 2, imagine que você deseja colocar -2 em evidência.
lcmaquino.org | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2652
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: logaritmos de novo...

Mensagempor Regina » Sáb Fev 26, 2011 15:33

Ok coloco então -2 em evidência
0,4(m-M)=-2(1-{log}_{10}d)
A minha dúvida agora é de onde vem o 1 - log
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando

Re: logaritmos de novo...

Mensagempor LuizAquino » Sáb Fev 26, 2011 15:41

Regina escreveu:A minha dúvida agora é de onde vem o 1 - log


Eu vou dar um exemplo diferente e daí você tenta entender de "onde vem" esse termo.

Digamos que você tenha 2x-6y. Eu quero colocar -2 em evidência. Então basta eu fazer -2(-x+3y). Mas, isso é a mesma coisa de escrever -2(3y - x).
lcmaquino.org | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2652
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: logaritmos de novo...

Mensagempor Regina » Sáb Fev 26, 2011 15:50

Já percebo, é relacionar a regra dos sinais! Que básico! Por isso fica negativo.

Muito Obrigada
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando

Re: logaritmos de novo...

Mensagempor Molina » Sáb Fev 26, 2011 18:18

Boa tarde Luiz e Regina.

Como os posts posteriores a este acima são referentes a outra questão, movi os comentário de vocês para um novo tópico:
http://ajudamatematica.com/viewtopic.php?f=108&t=3900

Grato!
:-D
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: logaritmos de novo...

Mensagempor LuizAquino » Sáb Fev 26, 2011 19:17

Molina escreveu:Como os posts posteriores a este acima são referentes a outra questão, movi os comentário de vocês para um novo tópico: http://ajudamatematica.com/viewtopic.php?f=108&t=3900

Obrigado Molina.
lcmaquino.org | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2652
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.