• Anúncio Global
    Respostas
    Exibições
    Última mensagem

logaritmo de novo aushu

logaritmo de novo aushu

Mensagempor my2009 » Sex Jan 28, 2011 21:37

O número real a é o menor dentre os valores de x que satisfazem a equação 2{log}_{2} ( 1+\sqrt[]{2}x)-{log}_{2}(\sqrt[]{2x} )= 3

Então, {log}_{2}\left(\frac{2a+4}{3} \right) é igual a :

Resp 1/2
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: logaritmo de novo aushu

Mensagempor 0 kelvin » Sáb Jan 29, 2011 18:54

Começa utilizando a propriedade do log de potência. 2 log a = log a^2

Depois como tem subtração de log de base 2, reescreve como quociente.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: logaritmo de novo aushu

Mensagempor my2009 » Seg Jan 31, 2011 20:24

Olá Kelvin... tentei fazer mas não deu certo mesmo

eu parei aqui :

\frac{{log}_{2}(1 + \sqrt[]{2x})^2}{{log}_{2}(\sqrt[]{2x}) = 3}

rsrsrs vc pode terminaar :-O ???
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: logaritmo de novo aushu

Mensagempor my2009 » Qua Fev 09, 2011 10:24

alguem pode me ajudar ?
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: logaritmo de novo aushu

Mensagempor 0 kelvin » Qua Fev 09, 2011 11:39

! \log_2{a} - \log_2{b} = \log_2{\frac{a}{b}}

Eu devia ter dito propriedade do log quociente no lugar de "reescreve como quociente" :-P

\log_2{\frac{(1 + \sqrt{2}x)^2}{\sqrt{2x}}} = 3 É raiz de 2 ou raiz de 2x em cima? Desenvolvendo a expressão esta parecendo que tem uma equação quadrática.

Definição do log:

2^3 = \frac{(1 + \sqrt{2}x)^2}{\sqrt{2x}}
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: logaritmo de novo aushu

Mensagempor my2009 » Qua Fev 09, 2011 12:14

Alguem , por favor pode responder essa questão ??? Desde o dia 28 DE JANEIRO estou esperando... e até então... não consegui resolver. 0 Kelvin agradeço sua ajuda.. mas estou ficando mais confusa hehehe desculpe
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: logaritmo de novo aushu

Mensagempor DanielFerreira » Qua Fev 09, 2011 12:53

my2009,
confirma por favor \sqrt{2x} ou \sqrt{2}x
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: logaritmo de novo aushu

Mensagempor my2009 » Qua Fev 09, 2011 13:01

Olá danjr5 é \sqrt[]{2} x
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: logaritmo de novo aushu

Mensagempor DanielFerreira » Qua Fev 09, 2011 13:16

Consegui.
vou postar.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: logaritmo de novo aushu

Mensagempor DanielFerreira » Qua Fev 09, 2011 13:36

\log_{2} (1 + \sqrt{2}x)^2 - \log_{2} (\sqrt{2}x) = 3

pela regrinha: \log_{2} a - \log_{2} b = \log_{2} (\frac{a}{b}), temos

\log_{2} [\frac{(1 + \sqrt{2}x)^2}{\sqrt{2}x}] = 3

[\frac{(1 + 2.\sqrt{2}x + 2x^2}{\sqrt{2}x}] = 8

1 + 2.\sqrt{2}x + 2x^2 = 8.{\sqrt{2}x}

1 + 2.\sqrt{2}x + 2x^2 - 8.{\sqrt{2}x} = 0

2x^2 - 6.\sqrt{2}x + 1 = 0

resolvendo essa eq. encontrará:
x' = \frac{3\sqrt{2} + 4}{2}

x'' = \frac{3\sqrt{2} - 4}{2}

o problema diz que a é o menor valor de x, portanto a = x".

Então,

\log_{2} [\frac{2a + 4}{3}] =

\log_{2} [\frac{2.\frac{3\sqrt{2} - 4}{2} + 4}{3}] =

\log_{2} [\frac{3\sqrt{2} - 4 + 4}{3}] =

\log_{2} [\frac{3\sqrt{2}}{3}] =

\log_{2} [\sqrt{2}] =

\log_{2} [2^\frac{1}{2}] =

\frac{1}{2}.\log_{2} 2 =

\frac{1}{2} . 1 =

\frac{1}{2}

Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: logaritmo de novo aushu

Mensagempor my2009 » Qua Fev 09, 2011 15:45

Com certeza ,me ajudou e muito !!!! Consegui entender... seria muito mais fácil se todas pessoas resolvessem dessa forma. Obrigada !
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: logaritmo de novo aushu

Mensagempor DanielFerreira » Qui Fev 10, 2011 09:29

:)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: logaritmo de novo aushu

Mensagempor Alisson Cabrini » Qui Ago 03, 2017 01:05

''
Alisson Cabrini
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Ago 03, 2017 00:53
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D