Página 1 de 1

Logaritmos.( Prove tal afirmação )

MensagemEnviado: Qui Out 14, 2010 18:15
por DanielRJ
Eu tenho algumas questões desse tipo que não estou conseguindo resolver.

Se a , b e c são reais positivos com a\not=1 e ac\not=1, prove que:


log_ab=(log_{ac}b).(1+log_ac)

Re: Logaritmos.( Prove tal afirmação )

MensagemEnviado: Qui Out 14, 2010 19:40
por MarceloFantini
Daniel, vou sair do segundo lado e chegar no primeiro. Primeiro, note que:

1 + \log_a c = \log_a a + \log_a c = \log_a (ac)

O que mostra a necessidade de ac \neq 1, caso contrário esse \log seria zero e o produto seria zero. Vamos ao produto:

(\log_{ac} b) \cdot (1 + \log_a c) = (\log_{ac} b) \cdot (\log_a (ac)) = \left( \frac{\log_a b}{\log_a ac} \right) \cdot (\log_a (ac)) = \log_a b

Provado.

Re: Logaritmos.( Prove tal afirmação )

MensagemEnviado: Sex Out 15, 2010 17:01
por DanielRJ
Fantini escreveu:Daniel, vou sair do segundo lado e chegar no primeiro. Primeiro, note que:

1 + \log_a c = \log_a a + \log_a c = \log_a (ac)

O que mostra a necessidade de ac \neq 1, caso contrário esse \log seria zero e o produto seria zero. Vamos ao produto:

(\log_{ac} b) \cdot (1 + \log_a c) = (\log_{ac} b) \cdot (\log_a (ac)) = \left( \frac{\log_a b}{\log_a ac} \right) \cdot (\log_a (ac)) = \log_a b

Provado.


Nossa é um pouco chato vou tentar fazer os outros aqui.

Re: Logaritmos.( Prove tal afirmação )

MensagemEnviado: Sex Out 15, 2010 18:02
por DanielRJ
Olá estou tendo dificuldade em prova essa aqui eu acabo achando outro resultado.

Se a, b e c são reais positivos e diferentes de 1 e a= b.c prove que:

\frac{1}{log_ac}=1+\frac{1}{log_bc}

Bmo vo passar o que resolvi aqui e achei outro resultado.

1+\frac{1}{log_bc}=\frac{log_bc+1}{log_bc}=\frac{log_bc+log_bb}{log_bc}=\frac{log_b(b.c)}{log_bc}=\frac{log_ba}{log_bc}=log_ca=\frac{log_aa}{log_ac}=\frac{1}{log_ac}

Editado conforme a ajuda do amigo fantini.

Re: Logaritmos.( Prove tal afirmação )

MensagemEnviado: Sex Out 15, 2010 18:12
por DanielRJ
A^{logB}=B^{logA}

Re: Logaritmos.( Prove tal afirmação )

MensagemEnviado: Sex Out 15, 2010 18:41
por MarceloFantini
Sejam \log B = x e \log A = y. Então A^{\log B} = A^x \rightarrow \log A^x = x \log A = \log B \cdot \log A = \log B \cdot y = y \log B = \log B^y

Note que \log A^x = \log B^y \rightarrow 10^{B^y} = 10^{A^x} \rightarrow A^x = B^y \rightarrow A^{\log B} = B^{\log A}