• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Logaritmos

Logaritmos

Mensagempor DanielRJ » Qua Out 06, 2010 17:20

São dados log 2= 0,30 e log 3 = 0,48 . O numero Real x, que é solução da equação 3^{x+1}=75 é tal que:

a)x<=0
b)0<x<=2
c)2<x<=3
d)3<x<=5
e)x>5

Bom eu fiz a conta de 2 jeitos vou demonstrar a mais fácil para um melhor entendimento.(log^25 = log de 25 na base 3 idem os outros.)

3^x.3=75

3^x=25 \therefore Log_{3}^{25}=\frac{Log25}{Log3}
por fim achei x=2,91...

Minha pergunta é no primeiro modo que eu fiz ( Log_{3}^{75}=x+1 ) por sinal uma volta imensa que nem da pra demonstrar os calculo obtive x=5/6 queria saber qual dos dois resultados está correto e onde eu encaixo eles na resposta desde já Obrigado!!!
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Logaritmos

Mensagempor MarceloFantini » Qua Out 06, 2010 17:58

Os dois estão corretos, a diferença é a quantidade de cálculos necessária.

Primeiro método:

3^{x+1} = 3^x \cdot 3 = 75 = 3 \cdot 25 \rightarrow 3^x = 25 \rightarrow \log_3 3^x = \log_3 25 \rightarrow x = \log_3 25 = \frac{\log 25}{\log 3} = \frac{\log 5^2}{\log 3} = 2 \cdot \frac{\log (\frac{10}{2})}{\log 3} = 2 \cdot \frac{1 - \log 2}{\log 3} \approx 2,92.

Segundo método:

3^{x+1} = 75 \rightarrow \log_3 3^{x+1} = \log_3 75 \rightarrow x+1 = \log_3 75 = \frac{\log 75}{\log 3} = \frac{\log (3 \cdot 25)}{\log 3} = \frac{\log 3 + \log 25}{\log 3} = 1 + \frac{\log 5^2}{\log 3} = 1 + 2 \cdot \frac{\log ( \frac{10}{2})}{\log 3} = 1 + 2 \cdot \frac{(1 - \log 2)}{\log 3} \rightarrow x \approx 2,92.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}