• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida exercício expressão logaritima

Dúvida exercício expressão logaritima

Mensagempor kalanicastanho » Seg Mai 30, 2016 09:30

.Olá gostaria de pedir ajuda para resolver um exercício de expressão logaritima da prova do processo seletivo do IFRS
É a seguinte questão

O valor da expressão (log{36}_{5})(log{32}_{7})(log{625}_{2})(log{343}_{6})
a)loglog{840}_{20}
b)42
c)5! RESPOSTA GABARITO
d)2(log{6}_{5}) + 5(log{2}_{7}) + 4(log{5}_{2})+ 3(log{7}_{6})
e)55

Comecei resolvendo o primeiro logaritmo porém no começo já dificultou tentei aplicar a propriedade de potência mas mesmo assim ficou ruim pra resolver, alguem poderia dizer se é necessário ou se deve e pode mudar todos logaritmos pra mesma base?
kalanicastanho
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Mai 30, 2016 09:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Dúvida exercício expressão logaritima

Mensagempor nakagumahissao » Seg Mai 30, 2016 23:10

Sim, você pode mudar de base. Ficaria muito mais facil trabalhar com esses logaritmos.

\log_{5}^{36} \log_{7}^{32} \log_{2}^{625} \log_{6}^{343} = \frac{\log_{6}^{36} \log_{2}^{32} \log_{5}^{625} \log_{7}^{343}}{\log_{6}^{5} \log_{2}^{7} \log_{5}^{2} \log_{7}^{6}} =

= \frac{2 \times 5 \times 4 \times 3}{\log_{6}^{5} \log_{2}^{7} \log_{5}^{2} \log_{7}^{6}} = \frac{5!}{\frac{\log_{2}^{5}}{\log_{2}^{6}} \times \log_{2}^{7} \times \frac{\log_{2}^{2}}{\log_{2}^{5}} \times \frac{\log_{2}^{6}}{\log_{2}^{7}} } = 5!
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}


cron