• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio máximo da funçao logarítmica

Domínio máximo da funçao logarítmica

Mensagempor wolney » Dom Mar 27, 2016 14:08

[Domínio máximo da funçao logarítmica]

O exercício está em inglês mas traduzindo literalmente é o seguinte : a funçao f(x) =log base 2 (log base 3(log base 2(log base 3(log x base 2)))) tem o intervalo x> ? como seu domínio máximo em números reais . Eu sei que x> o e que quando y=0 , x=1 mas eu nao consigo entender o que seria esse domínio máximo nem esse intervalo, nem como prosseguir ou começar a resolver essa questão. PS: quando eu digo log base , sem numero entre log e base significa q está sem numero msm como se multiplicasse pelo parenteses.
wolney
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 27, 2016 13:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Domínio máximo da funçao logarítmica

Mensagempor 0 kelvin » Seg Mar 28, 2016 22:42

Eu acho que a tradução não é "domínio máximo" porque eu nunca vi esse termo antes. Uma função logarítmica, qualquer que seja a base, tem um domínio onde vc sabe que não existe número que elevado a outro dê zero. Existe o limite da função quando x tende a zero e quando x tende a infinito. Logaritmo, por definição, não tem valores negativos.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Domínio máximo da funçao logarítmica

Mensagempor wolney » Ter Mar 29, 2016 09:15

0 kelvin escreveu:Eu acho que a tradução não é "domínio máximo" porque eu nunca vi esse termo antes. Uma função logarítmica, qualquer que seja a base, tem um domínio onde vc sabe que não existe número que elevado a outro dê zero. Existe o limite da função quando x tende a zero e quando x tende a infinito. Logaritmo, por definição, não tem valores negativos.


Obg,então é possivel nesse caso calcular esse limite? Se sim como seria?
wolney
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 27, 2016 13:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Domínio máximo da funçao logarítmica

Mensagempor 0 kelvin » Qua Mar 30, 2016 21:51

Limite de função é cálculo. Num livro de cálculo tem a prova do limite de log(x).

Domínio máximo soa como intervalo, o intervalo de valores para os quais o log(x) esta definido. No caso do log(x), a função aceita valores próximos de zero mas não iguais a zero (é aberto nesse ponto), até infinito (infinito não é um número, é aberto o intervalo para os valores positivos).

Intervalo de função é exatamente isso, um valor máximo e um mínimo para os quais a função tem algum valor real. Então, por exemplo, f(x) = x^2 o x pode assumir qualquer valor que a função sempre terá um valor real, o intervalo é aberto do menos infinito até o mais infinito.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D