• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio máximo da funçao logarítmica

Domínio máximo da funçao logarítmica

Mensagempor wolney » Dom Mar 27, 2016 14:08

[Domínio máximo da funçao logarítmica]

O exercício está em inglês mas traduzindo literalmente é o seguinte : a funçao f(x) =log base 2 (log base 3(log base 2(log base 3(log x base 2)))) tem o intervalo x> ? como seu domínio máximo em números reais . Eu sei que x> o e que quando y=0 , x=1 mas eu nao consigo entender o que seria esse domínio máximo nem esse intervalo, nem como prosseguir ou começar a resolver essa questão. PS: quando eu digo log base , sem numero entre log e base significa q está sem numero msm como se multiplicasse pelo parenteses.
wolney
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 27, 2016 13:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Domínio máximo da funçao logarítmica

Mensagempor 0 kelvin » Seg Mar 28, 2016 22:42

Eu acho que a tradução não é "domínio máximo" porque eu nunca vi esse termo antes. Uma função logarítmica, qualquer que seja a base, tem um domínio onde vc sabe que não existe número que elevado a outro dê zero. Existe o limite da função quando x tende a zero e quando x tende a infinito. Logaritmo, por definição, não tem valores negativos.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Domínio máximo da funçao logarítmica

Mensagempor wolney » Ter Mar 29, 2016 09:15

0 kelvin escreveu:Eu acho que a tradução não é "domínio máximo" porque eu nunca vi esse termo antes. Uma função logarítmica, qualquer que seja a base, tem um domínio onde vc sabe que não existe número que elevado a outro dê zero. Existe o limite da função quando x tende a zero e quando x tende a infinito. Logaritmo, por definição, não tem valores negativos.


Obg,então é possivel nesse caso calcular esse limite? Se sim como seria?
wolney
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 27, 2016 13:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Domínio máximo da funçao logarítmica

Mensagempor 0 kelvin » Qua Mar 30, 2016 21:51

Limite de função é cálculo. Num livro de cálculo tem a prova do limite de log(x).

Domínio máximo soa como intervalo, o intervalo de valores para os quais o log(x) esta definido. No caso do log(x), a função aceita valores próximos de zero mas não iguais a zero (é aberto nesse ponto), até infinito (infinito não é um número, é aberto o intervalo para os valores positivos).

Intervalo de função é exatamente isso, um valor máximo e um mínimo para os quais a função tem algum valor real. Então, por exemplo, f(x) = x^2 o x pode assumir qualquer valor que a função sempre terá um valor real, o intervalo é aberto do menos infinito até o mais infinito.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)