• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Logaritmos

Logaritmos

Mensagempor Souo » Sáb Jun 20, 2015 15:26

Se log a=3 e log b=1, ent?o o log \sqrt[3]{\frac{a}{{B}^{2}}}



A) 1
B) 1/3
C) 2/3
D) -1
E) -1/3
Souo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Abr 14, 2015 20:54
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Logaritmos

Mensagempor DanielFerreira » Dom Jun 21, 2015 18:02

Olá Souo, boa tarde!

\\ \log \sqrt[3]{\frac{a}{b^2}} = \\\\ \log \left ( \frac{a}{b^2} \right )^{\frac{1}{3}} = \\\\ \frac{1}{3} \cdot \log \left ( \frac{a}{b^2} \right ) = \\\\ \frac{1}{3} \cdot (\log a - \log b^2) = \\\\ \frac{\log a - 2 \cdot \log b}{3} = \\\\ \frac{3 - 2 \cdot 1}{3} = \\\\ \boxed{\frac{1}{3}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59