• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Log de 45 na base 18.

Log de 45 na base 18.

Mensagempor lucassouza » Sáb Nov 01, 2014 14:54

Olá, como se resolve essa questão de logaritmo

Log de 45 na base 18. esse exercícios está no capítulo que trata de mudança de base. a resposta é:

2y-x+1/2y+x

o máximo que encontrei foi 2y+1/2y+x
não sei de onde veio aquele "-x"

Estudo pelo livro de Marcondes Gentil volume único.
lucassouza
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Seg Set 15, 2014 15:03
Formação Escolar: SUPLETIVO
Andamento: cursando

Re: Log de 45 na base 18.

Mensagempor young_jedi » Sáb Nov 01, 2014 15:20

\log_{18}45=\frac{\log 45}{\log 18}

=\frac{\log 3^2.5}{\log 3^2.2}

=\frac{2\log 3+\log5}{2\log 3+\log 2}

=\frac{2\log 3+\log\frac{10}{2}}{2\log 3+\log 2}

=\frac{2\log 3+\log10-\log2}{2\log 3+\log 2}

=\frac{2y+1-x}{2y+x}

acredito que seja isso
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Log de 45 na base 18.

Mensagempor adauto martins » Sáb Nov 01, 2014 15:27

num entendi pq a resposta com x,y...pois:
\log_{18}^{45}=(\log_{9}^{45})/(\log_{9}^{18})=(1+\log_{9}^{5})/(1+\log_{9}^{2})...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Log de 45 na base 18.

Mensagempor adauto martins » Sáb Nov 01, 2014 15:30

bom demais...valeu young-jedi...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Log de 45 na base 18.

Mensagempor lucassouza » Sáb Nov 01, 2014 15:33

young_jedi escreveu:\log_{18}45=\frac{\log 45}{\log 18}

=\frac{\log 3^2.5}{\log 3^2.2}

=\frac{2\log 3+\log5}{2\log 3+\log 2}

=\frac{2\log 3+\log\frac{10}{2}}{2\log 3+\log 2}

=\frac{2\log 3+\log10-\log2}{2\log 3+\log 2}

=\frac{2y+1-x}{2y+x}

acredito que seja isso


Isso msm, não tinha me tocado para o log 5
lucassouza
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Seg Set 15, 2014 15:03
Formação Escolar: SUPLETIVO
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?