• Anúncio Global
    Respostas
    Exibições
    Última mensagem

2 Exercícios de Log.

2 Exercícios de Log.

Mensagempor julianows » Seg Dez 07, 2009 23:22

Boa Noite estou com algumas dificuldades em dois exercícios.

1°- O valor de X que satisfaz a equação \log_{2}[\log_{x}(x+2)]=1 é

a)-1
b)0
c)1
d)2 <---
e)3

este seria o primeiro
eu consegui resolver mas me tranquei em uma parte, devo ter errado algo

Aqui está minha tentativa

\log_{x}(x+2)=2
x^{2}=x+2

2°- Numa cidade do interior, um médico pediatra, após registrar por vários anos o crescimento de pacientes com idades entre 1 e 12 anos chegou a formula que indica a altura média das crianças.

10^{h-0,7}=\sqrt{i}

onde h respresenta a altura em metros e i, a idade em anos. Assim, supondo que o log 3 = 0,48, a altura média de uam criança de 9 anos, em metros será

a)1,15
b)1,16
c)1,17
d)1,18 <---
e)1,19

Bom seria isso, se alguem estiver disposto a me tirar estas dúvidas ficarei muito grato. :y: :y:
julianows
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Dez 07, 2009 22:57
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino Médio
Andamento: cursando

Re: 2 Exercícios de Log.

Mensagempor Elcioschin » Ter Dez 08, 2009 12:24

No primeiro vc parou no meio do caminho:

x + 2 = x²

x² - x - 2 = 0 ----> Equação do 2º grau ----> Bhaskara ----> Raízes ----> x = 2 ou x = -1

A raiz x = - 1 não serve pois x é uma base de log e a base é sempre maior do que zero ---> x > 0

Solução ----> x = 2

Quanto ao segundo:

10^(h - 0,7) = V(i) ----> 10^(h - 0,7) = i^(1/2) ----> Aplicando log na base 10:

log[10]{10^(h - 0,7)} = log[10]{i^(1/2)}

(h - 0,7)*log[10](10) = (1/2)*log[10](i) ----> i = 9 = 3²

(h - 0,7)*log[10](10) = (1/2)*log[10](3²)

(h - 0,7)*1 = (1/2)*2*log[10](3)

h - 0,7 = log[10](3) ----> h - 0,7 = 0,48 ----> h = 1,18

Por favor, coloque apenas 1 questão por tópico, daqui em diante.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: 2 Exercícios de Log.

Mensagempor julianows » Ter Dez 08, 2009 12:53

Elcioschin muito orbigado e desculpa por postar mais de uma questão ... não vai acontecer mais.
julianows
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Dez 07, 2009 22:57
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino Médio
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.