• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Me ajudem ae. Função logaritimica?

Me ajudem ae. Função logaritimica?

Mensagempor Anderson POntes » Qui Jul 08, 2010 20:52

Boa noite sou novo aqui e gsotaria de saber a resolução da questaoa abaixo e, pois estou estudando para um concurso e nao tive ainda nenhum raciocinio que chegasse a resolução da questao!

Quando os alunos perguntaram ao professor qual era a
sua idade, ele respondeu: “Se considerarmos as funções
f(x) = 1 + log3x e g(x) = log2x, e a igualdade
g(i) = f(243), i corresponderá à minha idade, em anos.”
Quantos anos tem o professor?
(A) 32
(B) 48
(C) 56
(D) 60
(E) 64
Agradeço desde já..
Anderson POntes
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Qui Jul 08, 2010 17:53
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico eletrotécnica
Andamento: formado

Re: Me ajudem ae. Função logaritimica?

Mensagempor Anderson POntes » Qui Jul 08, 2010 21:45

Alguem?
Anderson POntes
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Qui Jul 08, 2010 17:53
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico eletrotécnica
Andamento: formado

Re: Me ajudem ae. Função logaritimica?

Mensagempor Douglasm » Qui Jul 08, 2010 23:09

As funções são:

f(x) = 1 + \log_3 x

g(x) = \log_2 x

O que queremos é:

f(243) = g(i) \;\therefore

1 + \log_3 243 = \log_2 i \;\therefore

1 + 5 = \log_2 i \;\therefore

i = 2^6 = 64

E está ai a resposta.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59