• Anúncio Global
    Respostas
    Exibições
    Última mensagem

logaritmos com mudançã de base

logaritmos com mudançã de base

Mensagempor cristina » Ter Jun 08, 2010 10:23

Bom dia, não estou entendo como resolve este exercicio. Já tentei mas não consigo,

{log}_{5} (x + 4) - {log}_{25}(x + 3) = {log}_{5}2

Se Alguem puder me explicar como faço para mudar a base agradeço.
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: logaritmos com mudançã de base

Mensagempor Douglasm » Ter Jun 08, 2010 10:52

Olá cristina. Lembremos das seguintes propriedades de logaritmos:

log a^b = b. log a

log_xy = \frac{log_zy}{log_zx}

log a - log b = log\frac{a}{b}

Agora é só aplicá-las:

log_5\; (x+4) - \frac{log_5\;(x+3)}{log_5\; 25} = log_5\; 2 \; \therefore

log_5 \;(x+4) - \frac{log_5\;(x+3)}{2} = log_5\; 2 \; \therefore

2 log_5\;(x+4) - log_5\; (x+3) = 2 log_5 \;2 \; \therefore

log_5\; (x+4)^2 - log_5\; (x+3) = log_5\; 4 \; \therefore

log_5 \;\frac{(x+4)^2}{x+3} = log_5\; 4 \; \therefore

\frac{(x+4)^2}{x+3} = 4 \; \therefore

x^2 + 8x + 16 = 4x + 12 \; \therefore

x^2 + 4x + 4 = 0  \; \therefore

x = -2 \; (raiz \; dupla)

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: logaritmos com mudançã de base

Mensagempor cristina » Ter Jun 08, 2010 11:01

Obrigada, eu não estava entendo porque no livro o resultado é x= -3 e x= 9/2

Por isso que não estava compreendendo, e o seu resultado é outro.

Obrigada
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: logaritmos com mudançã de base

Mensagempor Douglasm » Ter Jun 08, 2010 11:37

Esse resultado do livro está errado mesmo. Veja, por exemplo, que -3 não é uma solução. (resultaria em log_{25}\;0).
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: logaritmos com mudançã de base

Mensagempor cristina » Ter Jun 08, 2010 11:38

Concordo com você, este exercicio já me deixou quase louca....rsrsrsrrsrsrs

Obrigada pela sua dica
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}