• Anúncio Global
    Respostas
    Exibições
    Última mensagem

cálculo de logaritmo

cálculo de logaritmo

Mensagempor ezidia51 » Dom Mar 18, 2018 19:12

Olá eu fiz este cálculo mas ainda estou com dúvida se está certo.Alguém poderia corrigir por favor?
resolva esta equação:log3(2x+5)=log9(4x+1)^2

log3(2x+5)=3log3(2x=5)
log9(4x+1)^2=log3(4x+1)^2/2

3log3(2x+5) =3 log3(4x+1)^2/2
2x+5=((4x+1)^2)1/2 =2x+5=4x+12x=4 e x=2
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: cálculo de logaritmo

Mensagempor Gebe » Dom Mar 18, 2018 21:19

Está incorreto. Vou primeiramente corrigir a primeira parte da tua resolução e posteriormente apresentar duas formas que eu considero mais simples de fazer.

Correção:
log3(2x+5)=3log3(2x+5)\\
log9(4x+1)^2=log3(4x+1)^2/2
Nessa parte tu separou os dois lados da equação para "transforma-los" em algo mais adequado (o que pode ser feito sem problemas), porem a primeira ficou errada. Perceba que tu escreveu log3(2x+5)=3log3(2x+5), ou seja, tu disse que o log3(2x+5) é o mesmo que tres vezes ele (3log3(2x+5)). A outra transformação, no entanto, esta sim correta log9(4x+1)^2=log3(4x+1)^2/2

Resolução (1ª forma): Esta é bem semlhante ao que tu fez. Utilizamos a propriedade de mudança de base de logaritmos.

log3(2x+5)=log3(2x+5)\\
log9(4x+1)^2=\frac{1}{2}log3(4x+1)^2

log3(2x+5)=\frac{1}{2}log3(4x+1)^2\\
log3(2x+5)=log3{\left(4x+1 \right)}^{\frac{2}{2}}\\
log3(2x+5)=log3(4x+1)\\
2x+5=4x+1\\
2x=4\\
x=2

Perceba que o \frac{1}{2} que estava na frente do log, passou a ser expoente do logaritmando, esta é uma das propriedades de logaritmos. Essa operação deve ser feita antes de cancelarmos os log's.

Resolução (2ª forma): Nesta forma vamos resolver sem fazer a troca de base, apenas resolvendo logaritmo pela definição.
log3(2x+5)=log9(4x+1)^2\\
(2x+5)={3}^{log9(4x+1)^2}\\
(2x+5)={3}^{2log9(4x+1)}\\
2x+5={3}^{{2}^{log9(4x+1)}}\\
2x+5={9}^{log9(4x+1}\\
2x+5=4x+1\\
2x=4\\
x=2

Perceba que foi utilizada uma propriedade de exponenciais: {a}^{bc}={a}^{{b}^{c}}={a}^{{c}^{b}}

Como podemos ver, novamente utilizamos a propriedade para mover o expoente do logaritmando para frente do log.
É importante sempre ter a mão uma folha com as propriedades de logaritmos (e exponenciais) caso ainda não estejam tão fixadas.
Caso algo ainda continue confuso, pode mandar uma msg que eu respondo.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 134
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: cálculo de logaritmo

Mensagempor ezidia51 » Dom Mar 18, 2018 22:30

Super super obrigado!!!! :y: :y: :y: :y: :y: :y:
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?