• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Logaritmos] Dúvida em Inequação com ln

[Logaritmos] Dúvida em Inequação com ln

Mensagempor PauloP » Ter Fev 09, 2016 15:41

Boa tarde. Estou com algumas dúvidas numa equação e numa inequação:

Nesta eu igualei o ln(2x+1) a "y", fiz a fórmula resolvente e obtive os dois zeros: -1 e -2.
A minha dúvida está em como apresento o resultado final tendo estes resultados.
Imagem


Nesta ainda não fiz nada e precisava de ajuda :s
Imagem

Agradecia imenso uma ajuda , com os passos se possível..
Muito obrigado,
Cumprimentos.
PauloP
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Fev 09, 2016 15:37
Formação Escolar: GRADUAÇÃO
Área/Curso: TPSI
Andamento: cursando

Re: [Logaritmos] Dúvida em Inequação com ln

Mensagempor petras » Sex Dez 02, 2016 23:56

Condição de existência 2x+ 1 > 0 --> x > -1/2

ln(2x+1)\leq-2\rightarrow2x+1\leq{e}^{-2}\rightarrow2x\leq\frac{1}{{e}^{2}}-1\rightarrow x\leq\frac{1-{e}^{2}}{2{e}^{2}}

mas como x>-1/2\rightarrow (-\frac{1}{2};\frac{1-{e}^{2}}{2{e}^{2}}]

ln(2x+1)\geq-1 \rightarrow 2x+1\geq{e}^{-1}\rightarrow 2x+1\geq\frac{1}{e} \rightarrow 2x\geq\frac{1}{e}-1\rightarrow x\geq\frac{1-e}{e}\rightarrow[\frac{1-e}{2e}; \infty)


A segunda fazemos 1 = 5^0
Bases iguais, igualam-se os expoentes. portanto teremos a equação 1 + 2sin(4x-2) = 0
Basta resolver a equação.
petras
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Sex Jan 22, 2016 21:19
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}