• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Logaritmos] Dúvida em Inequação com ln

[Logaritmos] Dúvida em Inequação com ln

Mensagempor PauloP » Ter Fev 09, 2016 15:41

Boa tarde. Estou com algumas dúvidas numa equação e numa inequação:

Nesta eu igualei o ln(2x+1) a "y", fiz a fórmula resolvente e obtive os dois zeros: -1 e -2.
A minha dúvida está em como apresento o resultado final tendo estes resultados.
Imagem


Nesta ainda não fiz nada e precisava de ajuda :s
Imagem

Agradecia imenso uma ajuda , com os passos se possível..
Muito obrigado,
Cumprimentos.
PauloP
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Fev 09, 2016 15:37
Formação Escolar: GRADUAÇÃO
Área/Curso: TPSI
Andamento: cursando

Re: [Logaritmos] Dúvida em Inequação com ln

Mensagempor petras » Sex Dez 02, 2016 23:56

Condição de existência 2x+ 1 > 0 --> x > -1/2

ln(2x+1)\leq-2\rightarrow2x+1\leq{e}^{-2}\rightarrow2x\leq\frac{1}{{e}^{2}}-1\rightarrow x\leq\frac{1-{e}^{2}}{2{e}^{2}}

mas como x>-1/2\rightarrow (-\frac{1}{2};\frac{1-{e}^{2}}{2{e}^{2}}]

ln(2x+1)\geq-1 \rightarrow 2x+1\geq{e}^{-1}\rightarrow 2x+1\geq\frac{1}{e} \rightarrow 2x\geq\frac{1}{e}-1\rightarrow x\geq\frac{1-e}{e}\rightarrow[\frac{1-e}{2e}; \infty)


A segunda fazemos 1 = 5^0
Bases iguais, igualam-se os expoentes. portanto teremos a equação 1 + 2sin(4x-2) = 0
Basta resolver a equação.
petras
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Sex Jan 22, 2016 21:19
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.