por apotema2010 » Seg Mar 08, 2010 11:21
Sabendo-se que log2=m, o valor de
![{log} _ {4} \sqrt [3] {25} {log} _ {4} \sqrt [3] {25}](/latexrender/pictures/4e752cf30b29b4d24b1a4cfb633b7691.png)
, resolvi da seguinte forma e não deu certo:
![{log} _ {4} \sqrt [3] {25} {log} _ {4} \sqrt [3] {25}](/latexrender/pictures/4e752cf30b29b4d24b1a4cfb633b7691.png)
=x

x=2/3
não é essa a resposta.
-
apotema2010
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qua Fev 17, 2010 14:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por apotema2010 » Ter Mar 09, 2010 10:27
Olha as alternativas que tenho:
a)

b)

c)

d)

e)

-
apotema2010
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qua Fev 17, 2010 14:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por MarceloFantini » Ter Mar 09, 2010 19:23
Vou continuar o raciocínio e você perceberá. Vou multiplicar a segunda fração em cima e embaixo por

:


Mesmo denominador, posso deixar tudo em uma fração:

Resposta letra D.
Espero ter ajudado.
Um abraço.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Logaritmo de base E
por Moreno1986 » Sex Ago 13, 2010 14:41
- 0 Respostas
- 696 Exibições
- Última mensagem por Moreno1986

Sex Ago 13, 2010 14:41
Logaritmos
-
- Logaritmo: determinar a base
por _Liilo » Dom Out 31, 2010 19:43
- 2 Respostas
- 5539 Exibições
- Última mensagem por _Liilo

Dom Out 31, 2010 22:12
Logaritmos
-
- Logaritmo que base e logaritmando não são divisiveis iguais
por Linuxmh » Qua Jul 17, 2013 20:15
- 4 Respostas
- 3390 Exibições
- Última mensagem por Linuxmh

Sex Jul 19, 2013 12:01
Logaritmos
-
- [Volumes de sólidos por rotação] Volume mudando os eixos
por Edmond Dantes » Sáb Out 20, 2018 11:31
- 2 Respostas
- 5732 Exibições
- Última mensagem por Edmond Dantes

Sáb Out 20, 2018 16:40
Cálculo: Limites, Derivadas e Integrais
-
- [Lógica Digital] Sistema Numérico Conversão Base X - Base 10
por Luc4sPaulo » Sex Fev 17, 2017 12:32
- 0 Respostas
- 4035 Exibições
- Última mensagem por Luc4sPaulo

Sex Fev 17, 2017 12:32
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.