• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Logaritmo em função de n

Logaritmo em função de n

Mensagempor Lana Brasil » Seg Jul 21, 2014 22:06

Boa Noite.
Não consegui chegar na resposta, tudo que fiz ficou diferente. Podem me ajudar, por favor?
Sabendo que 6^n = 2, identifique a alternativa que representa o valor de Log(2) 24 (base 2) em função de n:
a) (1+2n)/n
b) (2n-1)/n
c) 3n – 1/n
d) (n+2)/n
e) n-2
Agradeço desde já.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Logaritmo em função de n

Mensagempor e8group » Ter Jul 22, 2014 00:27

Multiplicando ambos lados por 4^n tem-se

4^n \cdot 6^n   = (4\cdot 6)^n = 24^n =  4^n \cdot 2 = (2^2)^n \cdot 2 = 2^{2n} \cdot 2 = 2 ^{2n+1} .

Aplicando log de base 2 resulta

log_2(24^n) = log_2(2^{2n+1})   \iff n \cdot log_2(24) =  (2n+1 ) \cdot log_2 (2)  \iff  \hdots .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Logaritmo em função de n

Mensagempor Pessoa Estranha » Ter Jul 22, 2014 00:32

Olá! Tenho uma sugestão também...

Temos

{6}^{n} = 2

Queremos

log_2{24}

Observe que

log_2{24} = log_2{6.4} = log_2{6} + log_2{4} \rightarrow n.log_2{24} = n.log_2{6} + n.log_2{4}

Daí,

n.log_2{24} = log_2{{6}^{n}} + n.2 \rightarrow log_2{24} = \frac{(1 + 2n)}{n}
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}