• Anúncio Global
    Respostas
    Exibições
    Última mensagem

MUDANÇA DE BASE

MUDANÇA DE BASE

Mensagempor renatoneumann » Qui Ago 29, 2013 16:58

SE LOG(3)7=a e LOG(5)3=b então LOG(5)7 é igual a :entre parenteses é a base do logaritmo , não consigo chegar na resposta a.b , mesmo usando a propriedade de mudança de base , como se resolve essa questão??vai ser uma grande ajuda
renatoneumann
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Ago 29, 2013 00:01
Formação Escolar: ENSINO MÉDIO
Área/Curso: ciencias da computação
Andamento: cursando

Re: MUDANÇA DE BASE

Mensagempor e8group » Qui Ago 29, 2013 18:46

Note que por definição ,

[;log_3(7) =a \iff 7 = 3^a ;]

e

[;log_5(3) = b \iff 3 = 5^b;]
Portanto , [;7 = (5^b)^a = 5^{a b};] .Por outro lado , novamente por definição [;log_5(7) = d \iff 7 = 5^{d};] , então [;d = a\cdot b;]

Observação : Para visualizar cada expressão entre [; ;] copie a mesma e cole neste site http://www.codecogs.com/latex/eqneditor.php?lang=pt-br
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.