• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Logaritmo]

[Logaritmo]

Mensagempor thamysoares » Qua Nov 14, 2012 20:38

Sou nova aqui e to meio perdida kk Mas já achei bem interessante esse fórum de matemática pra tirar minhas duvidas ;D Bom, nem sei se é aqui mesmo, deve ser. Queria ajuda em logaritmo. E já vou avisando que não sou boa em matemática kkk Ah! Esse editor de fórmulas... Ideal! E muito fácil de se usar!
log (x+1) + log x < log 6
Desde já agradeço.
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor MarceloFantini » Qua Nov 14, 2012 22:47

Bem vinda Thamy. Sobre a questão, usando as propriedades de logaritmo temos que \log(x+1) + \log x = \log x(x+1) = \log (x^2 +x). Voltando na desigualdade segue que \log (x^2 +x) < \log 6 e \log (x^2 +x) - \log 6 < 0.

Novamente usando as propriedades de logaritmo segue que \log \left( \frac{x^2 + x}{6} \right) < 0.

Daqui, lembre-se que pela definição de logaritmo isto significa que \frac{x^2 +x}{6} < a^0, onde a>0 e a \neq 1 é a base do logaritmo.

Portanto \frac{x^2 +x}{6} < 1 e x^2 + x < 6, de onde x^2 + x - 6 < 0.

Agora é só analisar esta desigualdade.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Logaritmo]

Mensagempor thamysoares » Qui Nov 15, 2012 11:15

MarceloFantini escreveu:Bem vinda Thamy. Sobre a questão, usando as propriedades de logaritmo temos que \log(x+1) + \log x = \log x(x+1) = \log (x^2 +x). Voltando na desigualdade segue que \log (x^2 +x) < \log 6 e \log (x^2 +x) - \log 6 < 0.

Novamente usando as propriedades de logaritmo segue que \log \left( \frac{x^2 + x}{6} \right) < 0.

Daqui, lembre-se que pela definição de logaritmo isto significa que \frac{x^2 +x}{6} < a^0, onde a>0 e a \neq 1 é a base do logaritmo.

Portanto \frac{x^2 +x}{6} < 1 e x^2 + x < 6, de onde x^2 + x - 6 < 0.

Agora é só analisar esta desigualdade.


Entendi perfeitamente sua explicação do logaritmo mas ainda não tenho certeza da minha resposta, já que a equação quadrática não tem raízes. Ou seja, ela será toda positiva sendo que na inequação pedem a solução <0, negativa. Nesse caso, a solução será um conjunto vazio? { }ou, seja, não tem solução?
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor DanielFerreira » Qui Nov 15, 2012 13:43

Thamy,
a equação tem raízes, veja:

\\ \Delta = b^2 - 4ac \\ \Delta = (1)^2 - 4 \cdot 1 \cdot (- 6) \\ \Delta = 1 + 24 \\ \Delta = 25 \\\\ x = \frac{- b \pm \sqrt{\Delta }}{2a} \\\\\\ \begin{cases} x' = \frac{- 1 + 5}{2} \Rightarrow \boxed{x' = 2} \\\\ x'' = \frac{- 1 - 5}{2} \Rightarrow \boxed{x'' = - 3}\end{cases}

Falta estudar o sinal da desigualdade!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Logaritmo]

Mensagempor thamysoares » Qui Nov 15, 2012 14:25

danjr5 escreveu:Thamy,
a equação tem raízes, veja:

\\ \Delta = b^2 - 4ac \\ \Delta = (1)^2 - 4 \cdot 1 \cdot (- 6) \\ \Delta = 1 + 24 \\ \Delta = 25 \\\\ x = \frac{- b \pm \sqrt{\Delta }}{2a} \\\\\\ \begin{cases} x' = \frac{- 1 + 5}{2} \Rightarrow \boxed{x' = 2} \\\\ x'' = \frac{- 1 - 5}{2} \Rightarrow \boxed{x'' = - 3}\end{cases}

Falta estudar o sinal da desigualdade!


Ah sim! Então a reposta será S={xER/-3<x<2}, correto?
Obrigada^^
thamysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Nov 14, 2012 19:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Logaritmo]

Mensagempor DanielFerreira » Qui Nov 15, 2012 14:50

Isso mesmo! Certin.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}