• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Logarítmica

Equação Logarítmica

Mensagempor Rafael16 » Ter Ago 07, 2012 22:03

Boa noite pessoal, não consegui resolver essa questão

{log}_{3+x}({x}^{2}-x)=1

3+x={x}^{2}-x ---> Aqui tenho uma dúvida, não sei se posso passar x² para o 1° membro, ou se posso deixar no 2° mesmo, pois a concavidade muda

{x}^{2}-2x-3=0 --> X'= -1 e x''=3

Os valores de x satisfazem as condições de existência da base e do logaritmando. Portanto S = {-1,3}

Mas a resposta do meu esta S = {3}
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Equação Logarítmica

Mensagempor fraol » Ter Ago 07, 2012 22:30

Boa noite,

Rafael16 escreveu:
3+x={x}^{2}-x ---> Aqui tenho uma dúvida, não sei se posso passar x² para o 1° membro, ou se posso deixar no 2° mesmo, pois a concavidade muda

Aqui não há problema pois, independente da concavidade, as raízes serão as mesmas.


Rafael16 escreveu:Os valores de x satisfazem as condições de existência da base e do logaritmando. Portanto S = {-1,3}

Certo. Então ou houve um lapso na transcrição dos sinais ou a resposta que lhe forneceram está incorreta.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Equação Logarítmica

Mensagempor Rafael16 » Ter Ago 07, 2012 22:45

Obrigado fraol, meu livro é muito antigo :-D
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Equação Logarítmica

Mensagempor MarceloFantini » Qua Ago 08, 2012 00:43

Você estão esquecendo as condições de existência do logaritmo: que 3+x \neq0 e x^2 -x > 0. A solução x=3 serve, mas x=-1 não.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação Logarítmica

Mensagempor fraol » Qua Ago 08, 2012 09:55

Bom dia,

Você está certo que
MarceloFantini escreveu: x=-1 não.
?

Aliás, as condições são 0 < 3+x \neq 1 e x^2 - x > 0.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Equação Logarítmica

Mensagempor MarceloFantini » Qua Ago 08, 2012 10:12

Reavaliando o que disse antes, de fato ambas são soluções. O gabarito está errado. Obrigado por apontar, fraol.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.