• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(U.F.Ouro Preto-MG) Resolva a equação logarítmica

(U.F.Ouro Preto-MG) Resolva a equação logarítmica

Mensagempor andersontricordiano » Ter Set 27, 2011 16:16

Resolva a equação logarítmica:
({log}_{2}8)({log}_{8}(2-x))+{log}_{2}(1-x)=2+2({log}_{4}3)

Resposta: S={-2}

Agradeço quem resolver esse calculo!
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (U.F.Ouro Preto-MG) Resolva a equação logarítmica

Mensagempor DanielFerreira » Dom Dez 18, 2011 12:26

andersontricordiano escreveu:Resolva a equação logarítmica:
({log}_{2}8)({log}_{8}(2-x))+{log}_{2}(1-x)=2+2({log}_{4}3)

Resposta: S={-2}

Agradeço quem resolver esse calculo!

{log}_{2}2^3 . ({log}_{8}(2 - x)) + {log}_{2}(1 - x) = 2 + {log}_{4}3^2

3 . {log}_{8}(2 - x) + {log}_{2}(1 - x) = 2 + {log}_{4}9

{log}_{8}(2 - x)^3 +{log}_{2}(1 - x) = 2 + {log}_{4}9

\frac{{log}_{2}(2 - x)^3}{{log}_{2}8} + {log}_{2}(1 - x) = 2 + \frac{{log}_{2}9}{{log}_{2}4}

3\frac{{log}_{2}(2 - x)}{{log}_{2}2^3} + {log}_{2}(1 - x) = 2 + \frac{{log}_{2}3^2}{{log}_{2}2^2}

3\frac{{log}_{2}(2 - x)}{3} + {log}_{2}(1 - x) = 2 + 2\frac{{log}_{2}3}{2}

{log}_{2}(2 - x) + {log}_{2}(1 - x) = 2 + {log}_{2}3

{log}_{2}[(2 - x)(1 - x)] = 2 + {log}_{2}3

{log}_{2}(2 - 2x - x - x^2) - {log}_{2}3 = 2

{log}_{2}\frac{x^2 - 3x + 2}{3} = 2

\frac{x^2 - 3x + 2}{3} = 2^2

x^2 - 3x + 2 = 12

x^2 - 3x - 10 = 0

(x - 5)(x + 2) = 0

x - 5 = 0
x = 5

x + 2 = 0
x = - 2

S = {- 2, 5}

Mas,
2 - x > 0
- x > - 2
x < 2

Portanto,
x = - 2
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?