• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integração e Diferenciação são de fato FUNÇÕES?

Integração e Diferenciação são de fato FUNÇÕES?

Mensagempor Jhenrique » Qui Set 13, 2012 02:30

Saudações caros estudantes!

Vou começar definindo 2 acepções para o termo função:
1) no sentido geral: conjunto de operações executadas por algo ou alguém.
2) no sentido matemático: uma grandeza y variando por causa da variação duma grandeza x

Pois bem, é certo afirmar que a Integração ou a Derivação duma função genérica f(x) é uma função no 2º sentido acima citado por mim, o matemático?

Creio que sim, porque:

seja y uma função f(x) qualquer

der(y) = y'
int(y) = Y


aplicamos a derivada e a integral numa função genérica como aplicamos a função seno e cosseno num ângulo qualquer... não é verdade!?

PS.: sendo y?¹ uma função inversa genérica, a melhor notação (sem colchetes) para denotar a sua derivada seria: y?¹' ou y'?¹ ?

Obg,
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Integração e Diferenciação são de fato FUNÇÕES?

Mensagempor MarceloFantini » Qui Set 13, 2012 10:12

Uma função entre dois conjuntos é uma regra que associa cada elemento do conjunto domínio a um elemento do contradomínio. Eu pelo menos acredito que esta idéia de que uma função é uma grandeza variando devido á variação de outra limita seu pensamento, pois existem funções das mais diversas formas e isto atrapalharia sua interpretação.

Sobre sua pergunta, sim: derivadas e integrais de uma função são funções. Muitas vezes são tomadas inclusive como o ponto de partida delas: uma das definições de logaritmo é \ln x = \int_1^x \frac{1}{t} \, dt, para tomar um exemplo simples.

aplicamos a derivada e a integral numa função genérica como aplicamos a função seno e cosseno num ângulo qualquer... não é verdade!?

Não tão genérica assim. Aplicamos derivadas em funções que sejam deriváveis e integrais em funções que sejam contínuas. São classes de funções bem restritas.

Sobre a notação, acredito que seja y^{-1}'.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}