• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Determinar equação da Parábola]

[Determinar equação da Parábola]

Mensagempor aliceleite » Ter Set 04, 2012 20:20

Bom, essa questão é do Programa de Avaliação Seriada da UnB, referente ao segundo ano. Eu estou com um pouco de dificuldade para resolvê-la e gostaria da ajuda de vocês.Sou nova aqui no fórum, por favor, se eu fizer algo de errado, tenham paciência comigo. Desde já, muito obrigada a todos que se prestarem a oferecer qualquer ajuda! ^^

Considere que, no esquema mostrado, a distância entre os
pontos A e B é igual a 4k, em que k é um número real positivo.
Considere, ainda, que esses pontos são simétricos em relação
à origem do sistema de coordenadas e que C = (0, -k). Com
base nesses dados, obtenha a equação da parábola que passa
pelos pontos A, B e C em função da constante k.
Anexos
Sem título.png
Figura dada na prova
Sem título.png (26.42 KiB) Exibido 1444 vezes
aliceleite
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Set 04, 2012 20:13
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Determinar equação da Parábola]

Mensagempor Russman » Qua Set 05, 2012 01:31

Bem vindo ao fórum. As regras gerais dizem que você deve postar sua tentativa de resolução. Mas vou tentar solucioná-la para você.

A equação da parábola, em uma de suas interpretações, pode ser escrita da seguinte forma:

y(x) = a(x-x_1)(x-x_2)

onde a é uma constante Real e x_1,x_2 são as raízes da mesma.

Pelo gráfico vemos que os pontos A e B são as intersecções da parábola com o eixo x, isto é, suas abscissas são as raízes da equação da parábola. A saber, x_A = x_1 e x_B = x_2, por exemplo.
Como a distância desses pontos é 4k, isto é, x_B - x_A = 4k \Rightarrow x_2 - x_1 = 4k, pois x_B >0 e x_A <0 portanto x_B>x_A, e , como são simétricos, isto é, x_B = -x_A \Rightarrow x_2 + x_1 = 0, temos o seguinte sistema:

\left\{\begin{matrix}
x_2-x_1=4k\\ 
x_2+x_1=0
\end{matrix}\right.

cuja solução é x_2=2k e x_1=-2k.

Logo, adiantando a equação, temos y(x) = a(x+2k)(x-2k).
Ainda, é fato que o ponto (0,-k) pertence a essa parábola. Assim,

y(x=0)=-k\Rightarrow a(-2k)(2k)=-k\Rightarrow -4ak^2=-k\Rightarrow a=\frac{1}{4k}, uma vez que k>0.

Portanto, a equação da parábola é y(x) = \frac{1}{4k}(x+2k)(x-2k). Ou então, y(x) =\left ( \frac{1}{4k} \right )x^2-k.

Rigth? (:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?