• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Exponencial

Inequação Exponencial

Mensagempor Rafael16 » Qui Jul 26, 2012 21:22

Olá pessoal, tentei resolver essa inequação, mas a resposta, de acordo com meu livro, esta errada. E não consigo entender o porque...

{2}^{-3}\leq ({\frac{1}{2}})^{x}\leq{2}^{3}

e achei X >= 3 e X <= -3 , Como não tem elementos em comum, o conjunto solução é vazio.
Mas a resposta é: -3 <= x <= 3

Gostaria que me explicasse o porque disso...

Valeu gente!
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Inequação Exponencial

Mensagempor DanielFerreira » Qui Jul 26, 2012 21:32

2^{- 3} \leq \left (  \frac{1}{2}\right )^x \leq 2^3

2^{- 3} \leq 2^{- x} \leq 2^3

Eliminando as bases

- 3 \leq - x \leq 3

Multiplicando por - 1

3 \geq x \geq - 3

Que é o mesmo que

\boxed{- 3 \leq x \leq 3}

Espero ter ajudado!!

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.