• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[PIF] Princípio de indução finita

[PIF] Princípio de indução finita

Mensagempor Beckyh » Qua Abr 11, 2012 06:45

Bom dia, gostaria que me ajudassem com meu problema de pif, eu simplesmente travo nas frações, a questão é a seguinte:
Se n E N*, mostre por indução que a seguinte fórmula é válida:

\frac{1}{1.2.3}+\frac{1}{3.4.5}+ ... +\frac{1}{n.(n+1).(n+2)} = \frac{n.(n+3)}{4.(n+1).(n+2)}
Beckyh
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 11, 2012 06:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [PIF] Princípio de indução finita

Mensagempor MarceloFantini » Qua Abr 11, 2012 21:03

Para aplicar o princípio da indução finita precisamos inicialmente mostrar o caso n=1. Mostre-nos como você fez isso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [PIF] Princípio de indução finita

Mensagempor Beckyh » Qui Abr 12, 2012 00:21

para n = 1 Temos:

\frac{1}{1.2.3}+\frac{1}{3.4.5}+ ... +\frac{1}{1.(1+1).(1+2)} = \frac{1.(1+3)}{4.(1+1).(1+2)} =

= \frac{1}{6} = \frac{4}{24} =\frac{1}{6}, tornando verdade p/n=1.

Hipótese: \frac{1}{1.2.3}+\frac{1}{3.4.5}+ ... +\frac{1}{k.(k+1).(k+2)} = \frac{k.(k+3)}{4.(k+1).(k+2)}, tomamos como verdade a hipótese e provamos para k+1.

Tese: \frac{1}{1.2.3}+\frac{1}{3.4.5}+ ... +\frac{1}{k.(k+1).(k+2)} + \frac{1}{(k+1).(k+2).(k+3)} = \frac{(k+1)(k+4)}{4.(k+2).(k+3)}
Beckyh
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 11, 2012 06:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)