• Anúncio Global
    Respostas
    Exibições
    Última mensagem

FUNÇÃO NÃO CONSIGO CHEGAR À RESPOSTA CERTA

FUNÇÃO NÃO CONSIGO CHEGAR À RESPOSTA CERTA

Mensagempor DIEGO ALVES LOPES » Sáb Abr 11, 2009 01:53

A questão é a seguinte:

(EEM-SP) Seja f:R\rightarrow R a função tal que f(x)=x{}^{2}. Seja g:R\rightarrow R a função tal que g(x)=\frac{f(x+h)-f(x)}{h}. Calcule g(x).

A resposta que o livro dá é: g(x)=2x+h

Tentei várias vezes, daí tive a idéia de por em evidência o f(x+h), ficou da seguinte forma:
f(x+h)=x{}^{2}+g(x).h, isso já considerando f(x) substituído por x{}^{2}.

Daí fiz a seguinte relação:

Se f(x)=x{}^{2}; e,
f(x+h)=x{}^{2}+g(x).h; então,
f(x+h)=(x+h){}^{2}+g(x).h.

Aí vem o problema, ao prosseguir o cálculo daí, chego na seguinte situação:

g(x)=\frac{x{}^{2}+2.x.h+ h{}^{2}+ g(x).h - x{}^{2}}{h}

prosseguindo eu chego em: g(x)=2x+h+g(x);, logo

g(x)-g(x)= 2x+h, finalizando em:

2x+h=0 em vez de g(x)=2x+h

Gostaria que me ajudassem a resolver esse problema.

Grato.

Diego
DIEGO ALVES LOPES
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Abr 11, 2009 01:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: FUNÇÃO NÃO CONSIGO CHEGAR À RESPOSTA CERTA

Mensagempor Molina » Sáb Abr 11, 2009 04:26

Boa noite, Diego.

É interessante o jeito que você pensou na questão, mas fazendo de uma forma mais simples, temos que:

g(x)=\frac{f(x+h)-f(x)}{h}

g(x)=\frac{{(x+h)}^{2}-{x}^{2}}{h}

g(x)=\frac{{x}^{2}+2xh+{h}^{2}-{x}^{2}}{h}

g(x)=\frac{2xh+{h}^{2}}{h}

g(x)=\frac{h*(2x+h)}{h}

g(x)=2x+h

Acredito que em breve você estará vendo Derivada, pois o \lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h} é a derivada de f no ponto f'(x). Mais informações pode-se obter aqui: http://pt.wikipedia.org/wiki/Derivada

Abraços. Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59