• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função de 2° grau

Função de 2° grau

Mensagempor Gustavo361 » Sex Set 16, 2011 14:59

Tenho uma questão que não acho o método para resolver, acredito que seja soma e produto!

(Questão): Determinar o valor de m de modo que a equação do 2° grau X² - (2m + 1)X + (2 + m²) = 0 admita uma raiz dupla.

(Procedimentos): Como na questão diz que possui uma raiz dupla, delta é diferente de zero./
x¹ + x² = 2m + 1
x¹ . x² = 2 + m²

Como resolver????
Gustavo361
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Set 14, 2011 19:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Função de 2° grau

Mensagempor Gustavo361 » Sex Set 16, 2011 15:45

galera, já achei o resultado! valeu!
X² - (2m + 1)X + (2 + m²) = 0

delta = (2m+1)² - 4.1.(2+m²)
delta = 4m²+4m+1 - 8-4m²
delta = 4m-7

pra ter raiz dupla (tive que pesquisar pra saber o que era esse termo, é o mesmo que dizer que a equação tem uma raiz só) o delta tem que ser igual a zero
na verdade quando pensava em raiz dupla, era obvio que tinha duas raízes, só que não pensei que eram iguais!
x(1) = x(2)

4m-7 = 0
m = 7/4
Gustavo361
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Set 14, 2011 19:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.