• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstre a propriedade

Demonstre a propriedade

Mensagempor Aliocha Karamazov » Sáb Jul 09, 2011 02:02

Galera, tenho um exercício de demonstrar as propriedade da imagem de uma função. Sempre que posto no fórum, mostro como tentei fazer o exercício. Dessa vez, o problema é que não sei como demonstrar nesse caso específico. Gostaria de uma ajuda no primeiro exercício, aí eu faço os outros...

Só para deixar claro, f(X) denota a imagem do conjunto X através da função f. X é um subconjunto do domínio. O exercício é esse:

Prove que f(X) \cup f(Y)=f(X \cup Y)

Agradeço a quem puder ajudar.
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Demonstre a propriedade

Mensagempor Guill » Dom Jul 10, 2011 09:33

Sejam f(x) e f(y) duas imagens das respectívas funções x e y. Sendo assim:

f(x)?f(y) representa a união das imagens dos conjuntos x e y.


Sabe-se que a imagem de um conjunto é obtida pelos valores de seu domínio. Como x e y são os domínios das funções f(x) e f(y), f(x)?f(y) é o agrupamento das imagens. Sabemos que as imagens f(x) e f(y) são obtidas a partir de x e y. Logo, se reunirmos os termos que foram usados para encontrar as imagens f(x) e f(y) e jogarmos na função, teremos os mesmos valores. Com isso:

f(x?y) = f(x)?f(y)



Poderia ter feito assim:

Seja x e y, conjuntos tais que:

x = {a;b;c;d;e...}
y = {f;g;h;i;j...}

As imagens f(x) e f(y) são:

f(x) = f(a) ; f(b) ; f(c) ; f(d) ; f(e)...
f(y) = f(f) ; f(g) ; f(h) ; f(i) ; f(j)...


Podemos definir assim:

x?y = {a;b;c;d;e...f;g;h;i;j...}

A união das imagens é:

f(x)?f(y) = f(a) ; f(b) ; f(c) ; f(d) ; f(e)...f(f) ; f(g) ; f(h) ; f(i) ; f(j)...


Sabe-se que:

f(x?y) = f(a) ; f(b) ; f(c) ; f(d) ; f(e)...f(f) ; f(g) ; f(h) ; f(i) ; f(j)... pois x?y = {a;b;c;d;e...f;g;h;i;j...}. Sendo assim, podemos determinar que:

f(x?y) = f(x)?f(y)
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.