por vinicius cruz » Ter Jun 14, 2011 15:31
olá
será que alguem poderia me sugerir uma equação simples que mostre o tempo de formatura de um estudante como por exemplo as grandezas:
-numero de matérias cursadas p/ semestre
-numero de semestres que leva para concluir uma matéria
-numero total de semestres
caso queira colocar outras variaveis fica avontade
-
vinicius cruz
- Usuário Dedicado

-
- Mensagens: 37
- Registrado em: Dom Mar 06, 2011 12:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia civil
- Andamento: cursando
por Neperiano » Ter Jun 21, 2011 16:22
Ola
Vou tentar criar uma
F = S.M
F = Formatura
S = Semestres
M = Matérias
Não entendi sua colocação na 2 porque se leva 1 semestre para termina uma matéria
Tambem não sei se fiz certo, não entendi muito bem, favor responder
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por vinicius cruz » Ter Jun 21, 2011 19:26
não sei se me expressei corretamente mas é assim:
Elaborar uma equação que tenha como variavel dependente o tempo de formatura e as variaves independendentes sejam representadas por fatores que influenciam nesse processo. Eu citei algumas mas caso quisesse poderia sujerir outras.
-
vinicius cruz
- Usuário Dedicado

-
- Mensagens: 37
- Registrado em: Dom Mar 06, 2011 12:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia civil
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação matemática financeira
por Castro » Dom Ago 04, 2013 21:51
- 0 Respostas
- 1058 Exibições
- Última mensagem por Castro

Dom Ago 04, 2013 21:51
Matemática Financeira
-
- Matemática Financeira: matemática
por Victor Gabriel » Sex Mai 10, 2013 02:49
- 1 Respostas
- 3148 Exibições
- Última mensagem por killua05

Qua Mai 29, 2013 13:49
Matemática Financeira
-
- Equação - Dúvida básica sobre a proporcionalidade de equação
por FelipeGM » Qui Jan 12, 2012 19:05
- 4 Respostas
- 7731 Exibições
- Última mensagem por FelipeGM

Sáb Jan 14, 2012 13:16
Álgebra Elementar
-
- Equação - como montar a equação desse problema?
por _Manu » Qua Jul 04, 2012 03:37
- 7 Respostas
- 13236 Exibições
- Última mensagem por _Manu

Qui Jul 05, 2012 01:49
Sistemas de Equações
-
- [Equação polinomial] Ajuda com essa equação?
por Mkdj21 » Sáb Jan 26, 2013 16:19
- 1 Respostas
- 13024 Exibições
- Última mensagem por young_jedi

Dom Jan 27, 2013 17:15
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.