• Anúncio Global
    Respostas
    Exibições
    Última mensagem

otimização (não sei se é aqui que devo postar)

otimização (não sei se é aqui que devo postar)

Mensagempor MarinheiroMat » Qua Mai 18, 2011 15:20

Problema de otimização

Mensagempor MarinheiroMat » Qua Mai 18, 2011 13:57
Uma fabrica de frascos destinados a produtos de conserva pretende o seguinte:
-> construir uma embalagem cilindrica com capacidade de 48π cm^3
-> A base inferior do cilindro do mesmo material da superficie lateral, que custa 2 euros por m^2
-> a base superior do cilindro de um material mais caro, que custa 3 euros por m^2

Supondo que não haverá perdas de material:
2.1 verifique que o custo de cada embalagem e dado, em euros, por:
C(r) = 0,0005πr^2 + 0,0192π/r sendo r o raio da base em cm.

2.2 Determine, com aproximação ás centesimas a altura e o raio da base do cilindro de modo a minimizar o custo do material gasto.

--------------------------------------------------------------------------------
Na primeira pergunta não sei como responder ja fiz o grafico na maquina calculadora mas acho que não é por ai
Na segunda pergunta não sei mesmo como fazer

Dêem me dicas para como fazer.

sfffffffffff



Alguem consegue chegar lá eu não :D
MarinheiroMat
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mai 18, 2011 14:53
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso profissional de Sistemas informati
Andamento: cursando

Re: otimização (não sei se é aqui que devo postar)

Mensagempor Max Cohen » Sex Mai 25, 2012 12:33

[Otimização] Olá
primeiro passo: Vamos encontrar uma função que descreva a altura, sabemos que V=48picm^3, então temos que V=pir^2.h (Volume do cilindro), então h=V/pir^2, então h=48pi/pir^2, então h(r)=48/r^2.
segundo passo: Vamos calcular as áreas das bases Ab1=pir^2, Ab2=pir^2.
terceiro passo: Vamos calcular o custo das bases, então temos C1=Ab1xV1(custo da base inferior), C2=Ab2xV2(custo da base superior), V1=2euros/m^2 e V2=3euros/m^2, C3=AlxV3(custo da área lateral), donde Al=2pirh, então Al=2pir(48/r^2), então Al=96pi/r, então C3=(96pi/r)xV3, tal que V3=V1, então C3=(96pi/r).2, porém nossas áreas estão em cm^2, basta mutiplica-las por 10^-4 para passa-las para m^2, então, temos que Ct=C1+C2+C3(custo total), então Ct=(pir^2x2+pir^2x3+(96pi/r)x2):10^-4 = 0,0005pir^2 + 0,0192pi/r, então C(r)=0,0005pir^2+0,0192pi/r.
Para achar o minimo, você deve derivar a função custo e depois iguala-la a 0, assim;
C'(r)=0,001pir - 0,0192pi/r^2, então C'(r)=0, então 0,001pir = 0,0192pi/r^2, então r^3 = 0,0192/0,001, então r^3 = 19,2, então r = 2,6777cm e daí h = 48/(2,6777)^2 então h = 6,6945cm.
Max Cohen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Mai 23, 2012 18:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.