por Zkz » Seg Set 29, 2008 23:02
Como posso demonstrar que a soma (f +g) e a subtração (f-g) de duas funções ímpares também são ímpares? E a multiplicação (fg) e divisao(f/g) de funções ímpares são funções pares?
Me ajudem =~~
-
Zkz
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Set 13, 2008 19:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia da computação
- Andamento: cursando
por Zkz » Seg Set 29, 2008 23:28
Eu estava aqui pensando e de repente veio uma luz. huahauhauhauah
Se eu fizer:
f(-x) + g(-x) = -f(x) - g(x) = -(f(x)+g(x)) , sendo f e g ímpares
-(f(x)+g(x)) = f(-x) + g(-x)
Portanto, f+g seria uma função ímpar. E então eu procederia da mesma forma na subtração:
f(-x) - g(-x) = -f(x) + g(x) = -(f(x) - g(x)) , sendo f e g ímpares
-(f(x) - g(x)) = f(-x) - g(-x)
Na multiplicação seria:
f(-x).g(-x) = -f(x).-g(x)= f(x).g(x)
f(x).g(x)= f(-x).g(-x), portanto par
Na divisão:
f(-x)\g(-x) = -f(x)\-g(x)= f(x).g(x)
f(x)\g(x)= f(-x)\g(-x), portanto par
=====================================================================================
Eu fiz no improviso. Numa prova de cálculo essa demonstração seria convincente? Me ajuda ai gente, é a minha primeira prova. hauahuahuah :]
-
Zkz
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Set 13, 2008 19:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia da computação
- Andamento: cursando
por Molina » Ter Set 30, 2008 00:20
Boa noite, Zkz.
É neste caminho mesmo que se demonstrapar e ímpar.
Basta pegar a definição de função par e a definição
de função ímpar. O resto é puro algebrismo.
Boa sorte na prova!
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Identificar funções pares e ímpares
por vmouc » Sex Mar 11, 2011 00:17
- 6 Respostas
- 5294 Exibições
- Última mensagem por vmouc

Sex Mar 11, 2011 19:33
Funções
-
- Duvidas sobre equações pares e impares
por Ricley » Qui Nov 02, 2017 00:13
- 0 Respostas
- 5039 Exibições
- Última mensagem por Ricley

Qui Nov 02, 2017 00:13
Cálculo: Limites, Derivadas e Integrais
-
- Funções impares- como provar
por Thayna Santos » Seg Mar 16, 2015 12:10
- 1 Respostas
- 1803 Exibições
- Última mensagem por adauto martins

Seg Mar 16, 2015 15:41
Funções
-
- número de divisores ímpares
por thadeu » Dom Nov 22, 2009 23:23
- 0 Respostas
- 1083 Exibições
- Última mensagem por thadeu

Dom Nov 22, 2009 23:23
Álgebra Elementar
-
- Analise combinatória numeros impares
por kariarita » Qui Ago 11, 2011 13:01
- 2 Respostas
- 1862 Exibições
- Última mensagem por kariarita

Qui Ago 11, 2011 15:36
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.