• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão prova concurso (função)

Questão prova concurso (função)

Mensagempor fernandocez » Qui Mar 10, 2011 22:17

Eu achei que sabia fazer essa, mas depois de comecei a resolver apareceu uma situação que não consegui dar continuidade.

52. O valor mínimo da função y={\left(x-a \right)}^{2}+{\left(x-b \right)}^{2} é:
resp. \frac{{\left(a-b \right)}^{2}}{2}

Quando ví o "o valor mínimo" já até imaginei - delta/4a.

y={\left(x-a \right)}^{2}+{\left(x-b \right)}^{2} = y=x²-2xa+a²+x²-2xb+b² ?

Aí que vi que tinha a e b e eu não sei o que fazer. Aguardo ajuda obrigado.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso (função)

Mensagempor LuizAquino » Qui Mar 10, 2011 22:30

Dica

y={\left(x-a \right)}^{2}+{\left(x-b \right)}^{2} \Rightarrow y = 2x^2 - 2(a + b)x + (a^2+b^2)

Sabemos que o mínimo (ou máximo) da função f(x) = px^2 + qx + r é y_v = -\frac{(q^2 - 4pr)}{4p}.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova concurso (função)

Mensagempor Fabricio dalla » Qui Mar 10, 2011 23:12

LuizAquino vc poderia resolver a questao de funçao modular com inequaçao pra mim no outro topico ?? desde ja agradeço!
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão prova concurso (função)

Mensagempor LuizAquino » Qui Mar 10, 2011 23:26

Fabricio dalla escreveu:vc poderia resolver a questao de funçao modular com inequaçao pra mim no outro topico ?


Por favor, não use um tópico aberto para pedir que um outro exercício seja resolvido.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova concurso (função)

Mensagempor fernandocez » Sex Mar 11, 2011 00:24

LuizAquino escreveu:Dica

y={\left(x-a \right)}^{2}+{\left(x-b \right)}^{2} \Rightarrow y = 2x^2 - 2(a + b)x + (a^2+b^2)

Sabemos que o mínimo (ou máximo) da função f(x) = px^2 + qx + r é y_v = -\frac{(q^2 - 4pr)}{4p}.


Vê por favor Luiz se substitui corretamente. Dei uma simplificada e ficou assim: \frac{4{\left(a+b \right)}^{2}-8\left({a}^{2}+{b}^{2} \right)}{8}

Tentei resolver mas não cheguei na resposta.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso (função)

Mensagempor LuizAquino » Sex Mar 11, 2011 10:38

Vê por favor Luiz se substitui corretamente. Dei uma simplificada e ficou assim: \frac{4{\left(a+b \right)}^{2}-8\left({a}^{2}+{b}^{2} \right)}{8}


Você esqueceu do sinal de menos antes da fração.

Para terminar a questão, lá vai mais duas dicas:
(i) Divida tanto o numerador quanto o denominador por 4.
(ii) Desenvolva o produto notável (a+b)^2 e faça as devidas simplificações no numerador.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova concurso (função)

Mensagempor fernandocez » Sex Mar 11, 2011 11:17

LuizAquino escreveu:
Você esqueceu do sinal de menos antes da fração.

Para terminar a questão, lá vai mais duas dicas:
(i) Divida tanto o numerador quanto o denominador por 4.
(ii) Desenvolva o produto notável (a+b)^2 e faça as devidas simplificações no numerador.


Consegui terminar, é o sinal também tava errado, tenho que ter mais atenção, sempre erro os sinais ou esqueço. Tá perto da prova ai vai aumentando a anciedade tenho que estudar a parte pedagógica e português. Obrigado.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59