• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ajuda com problema

ajuda com problema

Mensagempor Andersonborges » Qui Mar 03, 2011 00:21

7.a)Se você tivesse uma maquina que pudesse registrar a população mundial continuamente, você esperaria por um gráfico da população versus o tempo que fosse uma curva continua(não-interrompida)? Explique o que poderia interromper essa curva.

b) suponha que um paciente de um hospital receba uma injeção de um anti-biotico a cada 8 horas e que entre as injeções a concentração C de antibiótico na corrente sanguínea decresce a medida que ele é absorvido pelos tecidos. Como deveria ser o gráfico de C versus o tempo decorrido?



tem que escrever esses dois problemas... a B por grafico eh tranquilo,,, mais nao sei escrevela!
Andersonborges
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Fev 24, 2011 02:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia eletrica
Andamento: cursando

Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.