por natanskt » Ter Out 19, 2010 10:38
14-)seja a função
f(x)=1,se x é irracional
f(x)=-1,se x é racional
o valor da expressão:
a-)3
b-)2
c-)1
d-)0
e-)-1
o zero é o que racional ou irracional?
e o 1,333....?
esse aqui eu tenho que tirar a raiz do 2,e depois multiplicar por 3?
esse r é irracional !
acho que essa questão é facinha,mais eu to com essa duvida
-
natanskt
- Colaborador Voluntário
-
- Mensagens: 176
- Registrado em: Qua Out 06, 2010 14:56
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: nenhum
- Andamento: cursando
por MarceloFantini » Ter Out 19, 2010 17:37
Natanskt, já falei várias vezes, trabalhe com as
DEFINIÇÕES. Um número racional é todo número que pode ser escrito como divisão de
INTEIROS. Zero PODE ser escrito como divisão de inteiros:
com
e
. Um número
IRRACIONAL é todo aquele que
NÃO é racional, ou seja que
NÃO pode ser escrito como divisão de inteiros.
O problema definiu
como:
Se é
IRRACIONAL:
Se é
RACIONAL:
Você
NÃO precisa
CALCULAR o valor, ele já te dá. Tudo o que você precisa é saber se é
RACIONAL ou
IRRACIONAL.
O número
é racional. Use o método da fração geratriz pra encontrar qual é.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador
-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por natanskt » Qua Out 20, 2010 10:05
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
era facil,valeu fantini!!!!!!!!
-
natanskt
- Colaborador Voluntário
-
- Mensagens: 176
- Registrado em: Qua Out 06, 2010 14:56
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: nenhum
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (ESPCEX)Função
por natanskt » Sex Out 15, 2010 23:48
- 1 Respostas
- 1582 Exibições
- Última mensagem por DanielRJ
Sáb Out 16, 2010 00:30
Funções
-
- (ESPCEX)Função
por natanskt » Ter Out 19, 2010 10:20
- 2 Respostas
- 3647 Exibições
- Última mensagem por MarceloFantini
Ter Out 19, 2010 17:42
Funções
-
- (ESPCEX)Função
por natanskt » Ter Out 19, 2010 10:47
- 1 Respostas
- 3140 Exibições
- Última mensagem por MarceloFantini
Ter Out 19, 2010 17:32
Funções
-
- (ESPCEX)Função
por natanskt » Ter Out 19, 2010 10:52
- 1 Respostas
- 2441 Exibições
- Última mensagem por DanielRJ
Ter Out 19, 2010 16:10
Funções
-
- (ESPCEX)Função
por natanskt » Ter Out 19, 2010 11:06
- 3 Respostas
- 3108 Exibições
- Última mensagem por DanielRJ
Qua Out 20, 2010 11:05
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {
} e B = {
}, então o número de elementos A
B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {
} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {
} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.