• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equaçoes exponenciais

equaçoes exponenciais

Mensagempor natanskt » Qui Out 07, 2010 13:37

24-)(EEAER) os valores de \left( \sqrt{\sqrt[3]{5}\sqrt{5}\right) ^8 e 2^{-3/4} é?
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: equaçoes exponenciais

Mensagempor Elcioschin » Qui Out 07, 2010 14:53

Não está dando para entender. Por favor melhore.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: equaçoes exponenciais

Mensagempor Rogerio Murcila » Qui Out 07, 2010 15:09

O resultado é:
\frac{2*5\frac{8}{3}}{e\frac{3}{4}}

ou resolvendo aproximadamente:

69.0604
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado

Re: equaçoes exponenciais

Mensagempor MarceloFantini » Qui Out 07, 2010 15:31

Rogério, não sei se minha interpretação está correta, mas eu enxerguei dessa maneira: os valores de \left( \sqrt { \sqrt[3]{5} \cdot \sqrt{5} } \right)^8 e 2^{-\frac{3}{4}} são?

\left( \sqrt { \sqrt[3]{5} \cdot \sqrt{5} } \right)^8 = \left( \sqrt{ \sqrt[6]{5^5} } \right)^8 = \left( \sqrt[12]{5^5} \right)^8 = 5^{\frac{10}{3}} = 5^3 \cdot \sqrt[3]{5}

2^{-\frac{3}{4}} = \frac{1}{2^{\frac{3}{4}}} = \frac{1}{\sqrt[4]{2^3}} = \frac{1}{\sqrt[4]{8}}

Cabe ao Natan esclarecer.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: equaçoes exponenciais

Mensagempor natanskt » Qui Out 07, 2010 16:33

OOo galera tentei fazer do melhor jeito possivel,sou novato no latex,essa raiz quadrada do cinco encobre o o outro 5 é igual na primeira que encobre todos,
as alternativas são"
a-)25\frac{\sqrt[4]{2}}{2}
b-)5\frac{\sqrt[4]{2}}{2}
c-)5{\sqrt[4]{8}}
d-)a-)25{\sqrt[4]{8}}

está falando que dá alternativa A!

me ajuda aew pessoal,por favor podem fazer sem simplificar nada
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: equaçoes exponenciais

Mensagempor Rogerio Murcila » Qui Out 07, 2010 16:37

Olá Fantini,

Realmente fiz confusão pois considerei como \left( \sqrt { \sqrt[3]{5} \cdot \sqrt[3]{5} } \right)^8*{2e^{-\frac{3}{4}}

Não reparei que a raiz cubica \sqrt[3]{5} só no primeiro termo, outra coisa considerei o "e" como logaritmo natural na base e, afinal ele pergunto: "a resposta é?" Tudo no singular.

Refazendo desta forma como uma única conta: \left( \sqrt { \sqrt[3]{5} \cdot \sqrt{5} } \right)^8*{e*2^{-\frac{3}{4}}

Fica

\frac{e*5\frac{10}{3}}{2\frac{3}{4}} = 345,4793 em decimal

Se forem duas contas como voce colocou está certíssimo o teu calculo.
Desculpe minha confusão ai, grande abraço.
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado

Re: equaçoes exponenciais

Mensagempor Rogerio Murcila » Qui Out 07, 2010 17:11

Agora sim vamos lá,

\left( \sqrt { \sqrt[3]{5\sqrt{5}}} \right)^8*{2^{-\frac{3}{4}}

Fica

25\frac{\sqrt[4]{2}}{2}= 14,865 em decimal
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado

Re: equaçoes exponenciais

Mensagempor Rogerio Murcila » Qui Out 07, 2010 17:25

Desculpe não coloquei os passos:

\left( \sqrt { \sqrt[3]{5\sqrt{5}}} \right)^8*{2^{-\frac{3}{4}}

Fica

{2}^{-3/4}=\frac{1}{2}\sqrt[4]{2}

{\sqrt[3]{5\sqrt[2]{5}}}^{4} = 25

25\frac{\sqrt[4]{2}}{2}= 14,865 em decimal
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: