• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equaçoes exponenciais

equaçoes exponenciais

Mensagempor natanskt » Qui Out 07, 2010 13:37

24-)(EEAER) os valores de \left( \sqrt{\sqrt[3]{5}\sqrt{5}\right) ^8 e 2^{-3/4} é?
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: equaçoes exponenciais

Mensagempor Elcioschin » Qui Out 07, 2010 14:53

Não está dando para entender. Por favor melhore.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: equaçoes exponenciais

Mensagempor Rogerio Murcila » Qui Out 07, 2010 15:09

O resultado é:
\frac{2*5\frac{8}{3}}{e\frac{3}{4}}

ou resolvendo aproximadamente:

69.0604
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado

Re: equaçoes exponenciais

Mensagempor MarceloFantini » Qui Out 07, 2010 15:31

Rogério, não sei se minha interpretação está correta, mas eu enxerguei dessa maneira: os valores de \left( \sqrt { \sqrt[3]{5} \cdot \sqrt{5} } \right)^8 e 2^{-\frac{3}{4}} são?

\left( \sqrt { \sqrt[3]{5} \cdot \sqrt{5} } \right)^8 = \left( \sqrt{ \sqrt[6]{5^5} } \right)^8 = \left( \sqrt[12]{5^5} \right)^8 = 5^{\frac{10}{3}} = 5^3 \cdot \sqrt[3]{5}

2^{-\frac{3}{4}} = \frac{1}{2^{\frac{3}{4}}} = \frac{1}{\sqrt[4]{2^3}} = \frac{1}{\sqrt[4]{8}}

Cabe ao Natan esclarecer.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: equaçoes exponenciais

Mensagempor natanskt » Qui Out 07, 2010 16:33

OOo galera tentei fazer do melhor jeito possivel,sou novato no latex,essa raiz quadrada do cinco encobre o o outro 5 é igual na primeira que encobre todos,
as alternativas são"
a-)25\frac{\sqrt[4]{2}}{2}
b-)5\frac{\sqrt[4]{2}}{2}
c-)5{\sqrt[4]{8}}
d-)a-)25{\sqrt[4]{8}}

está falando que dá alternativa A!

me ajuda aew pessoal,por favor podem fazer sem simplificar nada
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: equaçoes exponenciais

Mensagempor Rogerio Murcila » Qui Out 07, 2010 16:37

Olá Fantini,

Realmente fiz confusão pois considerei como \left( \sqrt { \sqrt[3]{5} \cdot \sqrt[3]{5} } \right)^8*{2e^{-\frac{3}{4}}

Não reparei que a raiz cubica \sqrt[3]{5} só no primeiro termo, outra coisa considerei o "e" como logaritmo natural na base e, afinal ele pergunto: "a resposta é?" Tudo no singular.

Refazendo desta forma como uma única conta: \left( \sqrt { \sqrt[3]{5} \cdot \sqrt{5} } \right)^8*{e*2^{-\frac{3}{4}}

Fica

\frac{e*5\frac{10}{3}}{2\frac{3}{4}} = 345,4793 em decimal

Se forem duas contas como voce colocou está certíssimo o teu calculo.
Desculpe minha confusão ai, grande abraço.
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado

Re: equaçoes exponenciais

Mensagempor Rogerio Murcila » Qui Out 07, 2010 17:11

Agora sim vamos lá,

\left( \sqrt { \sqrt[3]{5\sqrt{5}}} \right)^8*{2^{-\frac{3}{4}}

Fica

25\frac{\sqrt[4]{2}}{2}= 14,865 em decimal
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado

Re: equaçoes exponenciais

Mensagempor Rogerio Murcila » Qui Out 07, 2010 17:25

Desculpe não coloquei os passos:

\left( \sqrt { \sqrt[3]{5\sqrt{5}}} \right)^8*{2^{-\frac{3}{4}}

Fica

{2}^{-3/4}=\frac{1}{2}\sqrt[4]{2}

{\sqrt[3]{5\sqrt[2]{5}}}^{4} = 25

25\frac{\sqrt[4]{2}}{2}= 14,865 em decimal
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?