por Jonatan » Qui Jul 29, 2010 10:20
O salário médio, por hora de trabalho, numa fábrica de 110 trabalhadores é de R$ 250,00. Calculando-se, no entanto, apenas com os 100 trabalhadores homens, a média passa a ser R$ 265,00. Qual o salário médio das mulheres, por hora de trabalho, em reais?
Gabarito: R$ 100,00
Fonte do exercício: Fundamentos da Matemática Elementar - Iezzi, Vol. 1
Observação: valores estavam em ''cruzeiros reais'', coloquei reais, hipoteticamente.
Pessoal, esta questão está no capítulo que trata de função do 1ºgrau. Entretanto, eu não faço ideia de como começá-la. Pensei em começar a descrever f(x) = ax+b, mas não resolveria, eu acho. Alguém pode resolver e me explicar? Desde já, agradeço.
-
Jonatan
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Qua Jun 16, 2010 13:29
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Lucio Carvalho » Qui Jul 29, 2010 10:59
Olá Jonatan,
Tentarei ajudar, passo a passo.
Graças à primeira frase, vamos calcular a soma dos salários de todos os trabalhadores:
110 . 250 = 27500
A segunda frase diz que existem 100 homens cuja média salarial é 265. Logo, concluímos que existem 10 mulheres cuja média salarial não sabemos.
Então, construímos a seguinte equação:
100 . 265 + 10 . x = 27500
26500 + 10 . x = 27500
10 . x = 27500 - 26500
x = 1000/10
x = 100
Resposta: O salário médio das mulheres, por hora de trabalho, é 100,00 Reais.
(Nota: 100 . 265 = 26500 representa a soma dos salários dos homens)
Espero que tenhas compreendido. Qualquer dúvida adicional, estamos aí!
-

Lucio Carvalho
- Colaborador Voluntário

-
- Mensagens: 127
- Registrado em: Qua Ago 19, 2009 11:33
- Localização: Rua 3 de Fevereiro - São Tomé
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física/Química
- Andamento: formado
por Jonatan » Qui Jul 29, 2010 15:56
Entendi. Ficou muito claro. Obrigado pela atenção, Lucio.
-
Jonatan
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Qua Jun 16, 2010 13:29
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema envolvendo função
por marianacarvalhops » Sáb Mai 02, 2009 17:46
- 1 Respostas
- 4332 Exibições
- Última mensagem por Marcampucio

Sáb Mai 02, 2009 18:27
Funções
-
- Problema envolvendo função
por Carlos28 » Dom Abr 28, 2013 11:15
- 1 Respostas
- 2041 Exibições
- Última mensagem por young_jedi

Dom Abr 28, 2013 20:59
Funções
-
- Problema envolvendo função
por Filipefutsal » Qui Jun 27, 2013 11:42
- 0 Respostas
- 988 Exibições
- Última mensagem por Filipefutsal

Qui Jun 27, 2013 11:42
Funções
-
- Problema envolvendo função
por thomaswpp » Qua Jul 24, 2013 19:37
- 2 Respostas
- 1759 Exibições
- Última mensagem por thomaswpp

Qui Jul 25, 2013 19:20
Funções
-
- [Função afim] Determinar a função afim
por Apprentice » Dom Set 30, 2012 21:49
- 4 Respostas
- 3077 Exibições
- Última mensagem por Apprentice

Seg Out 01, 2012 12:19
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.