Estou com uma duvida em mais uma questão de funções e não sei o que fazer hehe.
Tenho prova amanhã e só faltam algumas coisas pra eu me sentir preparado totalmente pra fazer uma boa prova

e essa

Obrigado ai pra quem puder me ajudar!



é uma exponencial, ela tem a forma
, onde k é constante. Usando o gráfico:
. Uma vez obtida a constante, temos que
. Portanto,
. A função inversa é o logaritmo na base a, ou seja,
, onde
.
, porém
. Terceira afirmação também é verdadeira pois é uma consequência direta da primeira.
no intervalo
é uma parábola (exceto no ponto 2) com raízes 0 e 3. Assim, de [0,3] a função toma a forma de
. Agora vamos calcular o limite:
. Portanto, o limite existe.



Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
zig escreveu:

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.