por ti123 » Qui Out 08, 2020 09:36
No plano cartesiano abaixo, estão representadas as retas r, s, u e v, com r//s e u//v. A reta s corta o eixo das abscissas no ponto (2 , 0), assim como a reta v em (a , 0) e a reta u em (x , 0), em que 2 < a < x. P é o ponto de interseção entre as retas s e v e Q, entre as retas r e u. A reta PQ passa pela origem do plano cartesiano. O valor de x é:
Gabarito :
Minha tentativa:
Considerando
b é onde r corta y
c é onde s corta y
d é onde u corta y
e é onde v corta y
Sendo m coeficiente angular das retas r e s
é chamando m' de coeficiente angular de u e v
m=-b/a b=-am
m= -c/2 c=-2m
m'=-d/x d=-xm'
m'=-e/a e=-am'
Ao fazer as equações da reta, [b=-am, c= -2m, d= -xm e e=-am], cheguei em :
x+(-am)
r = xm-am
Seguindo a lógica:
s= xm-2m
u = xm-xm
v = xm-am
Encontrei P=m(-2+a) e Q=m(x-a)
Travei aqui, além disso, suponho que esteja errado.
Alguém pode me ajudar?
-
ti123
- Novo Usuário
-
- Mensagens: 1
- Registrado em: Qua Mar 18, 2020 19:27
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Computação
- Andamento: cursando
por DanielFerreira » Seg Out 12, 2020 20:53
Olá
ti123, seja bem vindo(a)!
Já que
e
, possivelmente, poderá obter a resposta utilizando os conceitos envolvendo
Semelhança de triângulos.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação
-
- Mensagens: 1729
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por DanielFerreira » Dom Out 25, 2020 16:06
Ti123, trace a reta
que passa pela origem. Por conseguinte, sejam
e
as distâncias dos pontos
e
ao eixo
, respectivamente. Isto posto, temos que
.
Daí,
e
. Com efeito,
Por fim, basta igualar a razão... Veja:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação
-
- Mensagens: 1729
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Funções Trigonométricas] - Com plano cartesiano
por rds0708 » Qua Mar 07, 2012 00:05
- 7 Respostas
- 5713 Exibições
- Última mensagem por rds0708
Seg Mar 12, 2012 16:58
Trigonometria
-
- Plano cartesiano
por Jaison Werner » Sex Abr 23, 2010 21:06
- 1 Respostas
- 2479 Exibições
- Última mensagem por Molina
Sáb Abr 24, 2010 13:06
Geometria Analítica
-
- Plano cartesiano
por Jaison Werner » Ter Abr 27, 2010 18:57
- 1 Respostas
- 1839 Exibições
- Última mensagem por Neperiano
Ter Set 27, 2011 19:53
Geometria Analítica
-
- Plano Cartesiano Bidimensional
por vanessafey » Dom Jul 10, 2011 14:24
- 1 Respostas
- 2155 Exibições
- Última mensagem por MarceloFantini
Seg Jul 11, 2011 03:20
Geometria Analítica
-
- Triângulo no plano cartesiano
por Evelyn 1 » Ter Jan 17, 2012 20:38
- 1 Respostas
- 1911 Exibições
- Última mensagem por Arkanus Darondra
Ter Jan 17, 2012 21:18
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois
2°) Admitamos que
, seja verdadeira:
(hipótese da indução)
e provemos que
Temos: (Nessa parte)
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que
seja verdadeiro, e pretendemos provar que também é verdadeiro para
.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:
, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como
é
a
, e este por sua vez é sempre
que
, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.